
f Understanding dissemination of Mycobacterium tuberculosis from the lungs during primary infection
- Authors: Michelle B. Ryndak1 , Dinesh Chandra1,† , Suman Laal1,2
-
- VIEW AFFILIATIONS
-
1 1Department of Pathology, New York University School of Medicine,New York, NY 10016,USA 2 2Veterans Affairs New York Harbor Healthcare System,New York, NY 10010,USA
- Correspondence Suman Laal [email protected]
- First Published Online: 01 May 2016, Journal of Medical Microbiology 65: 362-369, doi: 10.1099/jmm.0.000238
- Subject: Pathogenicity and Virulence/Host Response
- Received:
- Accepted:
- Cover date:




Understanding dissemination of Mycobacterium tuberculosis from the lungs during primary infection, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/jmm/65/5/362_jmm000238-1.gif
-
Understanding how inhaled Mycobacterium tuberculosis achieves dramatic replication and crosses the alveolar barrier to establish systemic latent infection, before adaptive immunity is elicited in humans, is limited by the small infecting inoculum carried in aerosol droplets (1–5 μm diameter) and the inability to identify the time of infection. M. tuberculosis is believed to disseminate via infected macrophages. However, like other invasive bacterial pathogens, M. tuberculosis could also cross the barrier directly using adhesins and toxins. An in vitro alveolar barrier mimicking the gas-exchange regions of the alveolus was devised comprising monolayers of human alveolar epithelial and endothelial cells cultured on opposing sides of a basement membrane. Migration of dissemination-competent strains of M. tuberculosis, and dissemination-attenuated M. tuberculosis and Mycobacterium bovis mutant strains lacking adhesin/toxin ESAT-6 and adhesin HBHA were tested for macrophage-free migration across the barrier. Strains that disseminate similarly in vivo migrated similarly across the in vitro alveolar barrier. Strains lacking ESAT-6 expression/secretion were attenuated, and absence of both ESAT-6 and HBHA increased attenuation of bacterial migration across the barrier. Thus, as reported for other bacteria, M. tuberculosis utilizes adhesins and toxins for macrophage-independent crossing of the alveolar barrier. This in vitro model will allow identification and characterization of molecules/mechanisms employed by M. tuberculosis to establish systemic latent tuberculosis infection during primary infection.
-
†
Present address: Department of Microbiology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
-
A supplementary table is available with the online Supplementary Material.
-
Abbreviations: AEC alveolar epithelial cell BCG bacillus Calmette–Guérin BM basement membrane EC endothelial cell ECM extracellular matrix FBS fetal bovine serum HIV human immunodeficiency virus LTBI latent TB infection TB tuberculosis TER transmembrane electrical resistance
© 2016 The Authors | Published by the Microbiology Society
-
Ashiru O. T., Pillay M., Sturm A. W.. ( 2010;). Adhesion to and invasion of pulmonary epithelial cells by the F15/LAM4/KZN and Beijing strains of Mycobacterium tuberculosis. J Med Microbiol 59: 528––533 [CrossRef] [PubMed].
-
Barrios-Payán J., Saqui-Salces M., Jeyanathan M., Alcántara-Vazquez A., Castañon-Arreola M., Rook G., Hernandez-Pando R.. ( 2012;). Extrapulmonary locations of Mycobacterium tuberculosis DNA during latent infection. J Infect Dis 206: 1194––1205 [CrossRef] [PubMed].
-
Bermudez L. E., Sangari F. J., Kolonoski P., Petrofsky M., Goodman J.. ( 2002;). The efficiency of the translocation of Mycobacterium tuberculosis across a bilayer of epithelial and endothelial cells as a model of the alveolar wall is a consequence of transport within mononuclear phagocytes and invasion of alveolar epithelial cells. Infect Immun 70: 140––146 [CrossRef] [PubMed].
-
Bierne H., Sabet C., Personnic N., Cossart P.. ( 2007;). Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes Infect 9: 1156––1166 [CrossRef] [PubMed].
-
Castro-Garza J., King C. H., Swords W. E., Quinn F. D.. ( 2002;). Demonstration of spread by Mycobacterium tuberculosis bacilli in A549 epithelial cell monolayers. FEMS Microbiol Lett 212: 145––149 [CrossRef] [PubMed].
-
Caws M., Thwaites G., Dunstan S., Hawn T. R., Lan N. T. N., Thuong N. T. T., Stepniewska K., Huyen M. N. T., Bang N. D., other authors. ( 2008;). The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog 4: e1000034 [CrossRef] [PubMed].
-
Chackerian A. A., Alt J. M., Perera T. V., Dascher C. C., Behar S. M.. ( 2002;). Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun 70: 4501––4509 [CrossRef] [PubMed].
-
Chen S. M., Tsai Y. S., Wu C. M., Liao S. K., Wu L. C., Chang C. S., Liu Y. H., Tsai P. J.. ( 2010;). Streptococcal collagen-like surface protein 1 promotes adhesion to the respiratory epithelial cell. BMC Microbiol 10: 320 [CrossRef] [PubMed].
-
Click E. S., Moonan P. K., Winston C. A., Cowan L. S., Oeltmann J. E.. ( 2012;). Relationship between Mycobacterium tuberculosis phylogenetic lineage and clinical site of tuberculosis. Clin Infect Dis 54: 211––219 [CrossRef] [PubMed].
-
Delogu G., Sanguinetti M., Posteraro B., Rocca S., Zanetti S., Fadda G.. ( 2006;). The hbhA gene of Mycobacterium tuberculosis is specifically upregulated in the lungs but not in the spleens of aerogenically infected mice. Infect Immun 74: 3006––3011 [CrossRef] [PubMed].
-
Dobos K. M., Spotts E. A., Quinn F. D., King C. H.. ( 2000;). Necrosis of lung epithelial cells during infection with Mycobacterium tuberculosis is preceded by cell permeation. Infect Immun 68: 6300––6310 [CrossRef] [PubMed].
-
Doran K. S., Banerjee A., Disson O., Lecuit M.. ( 2013;). Concepts and mechanisms: crossing host barriers. Cold Spring Harb Perspect Med 3: a010090 [CrossRef] [PubMed].
-
Dramsi S., Bourdichon F., Cabanes D., Lecuit M., Fsihi H., Cossart P.. ( 2004;). FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol Microbiol 53: 639––649 [CrossRef] [PubMed].
-
Fontán P., Aris V., Ghanny S., Soteropoulos P., Smith I.. ( 2008;). Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection. Infect Immun 76: 717––725 [CrossRef] [PubMed].
-
Frigui W., Bottai D., Majlessi L., Monot M., Josselin E., Brodin P., Garnier T., Gicquel B., Martin C., other authors. ( 2008;). Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 4: e33 [CrossRef] [PubMed].
-
Furuyama A., Mochitate K.. ( 2000;). Assembly of the exogenous extracellular matrix during basement membrane formation by alveolar epithelial cells in vitro. J Cell Sci 113: 859––868 [PubMed].
-
Gagneux S., Small P. M.. ( 2007;). Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7: 328––337 [CrossRef] [PubMed].
-
Guinn K. M., Hickey M. J., Mathur S. K., Zakel K. L., Grotzke J. E., Lewinsohn D. M., Smith S., Sherman D. R.. ( 2004;). Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol 51: 359––370 [CrossRef] [PubMed].
-
Hernández-Pando R., Jeyanathan M., Mengistu G., Aguilar D., Orozco H., Harboe M., Rook G. A. W., Bjune G.. ( 2000;). Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356: 2133––2138 [CrossRef] [PubMed].
-
Hernández-Pando R., Aguilar D., Cohen I., Guerrero M., Ribon W., Acosta P., Orozco H., Marquina B., Salinas C., other authors. ( 2010;). Specific bacterial genotypes of Mycobacterium tuberculosis cause extensive dissemination and brain infection in an experimental model. Tuberculosis (Edinb) 90: 268––277 [CrossRef] [PubMed].
-
Hsu T., Hingley-Wilson S. M., Chen B., Chen M., Dai A. Z., Morin P. M., Marks C. B., Padiyar J., Goulding C., other authors. ( 2003;). The primary mechanism of attenuation of bacillus Calmette-Guérin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A 100: 12420––12425 [CrossRef] [PubMed].
-
Kinhikar A. G., Vargas D., Li H., Mahaffey S. B., Hinds L., Belisle J. T., Laal S.. ( 2006;). Mycobacterium tuberculosis malate synthase is a laminin-binding adhesin. Mol Microbiol 60: 999––1013 [CrossRef] [PubMed].
-
Kinhikar A. G., Verma I., Chandra D., Singh K. K., Weldingh K., Andersen P., Hsu T., Jacobs W. R. Jr., Laal S.. ( 2010;). Potential role for ESAT6 in dissemination of M. tuberculosis via human lung epithelial cells. Mol Microbiol 75: 92––106 [CrossRef] [PubMed].
-
Kong Y., Cave M. D., Zhang L., Foxman B., Marrs C. F., Bates J. H., Yang Z. H.. ( 2007;). Association between Mycobacterium tuberculosis Beijing/W lineage strain infection and extrathoracic tuberculosis: insights from epidemiologic and clinical characterization of the three principal genetic groups of M. tuberculosis clinical isolates. J Clin Microbiol 45: 409––414 [CrossRef] [PubMed].
-
Kuo C. J., Bell H., Hsieh C. L., Ptak C. P., Chang Y. F.. ( 2012;). Novel mycobacteria antigen 85 complex binding motif on fibronectin. J Biol Chem 287: 1892––1902 [CrossRef] [PubMed].
-
Laal S.. ( 2012;). How does Mycobacterium tuberculosis establish infection?. J Infect Dis 206: 1157––1159 [CrossRef] [PubMed].
-
Lewis K. N., Liao R., Guinn K. M., Hickey M. J., Smith S., Behr M. A., Sherman D. R.. ( 2003;). Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guérin attenuation. J Infect Dis 187: 117––123 [CrossRef] [PubMed].
-
Marriott H. M., Mitchell T. J., Dockrell D. H.. ( 2008;). Pneumolysin: a double-edged sword during the host-pathogen interaction. Curr Mol Med 8: 497––509 [CrossRef] [PubMed].
-
McCormick B. A.. ( 2003;). The use of transepithelial models to examine host-pathogen interactions. Curr Opin Microbiol 6: 77––81 [CrossRef] [PubMed].
-
McDonough K. A., Kress Y.. ( 1995;). Cytotoxicity for lung epithelial cells is a virulence-associated phenotype of Mycobacterium tuberculosis. Infect Immun 63: 4802––4811 [PubMed].
-
Mehta P. K., King C. H., White E. H., Murtagh J. J. Jr., Quinn F. D.. ( 1996;). Comparison of in vitro models for the study of Mycobacterium tuberculosis invasion and intracellular replication. Infect Immun 64: 2673––2679 [PubMed].
-
Neyrolles O., Hernández-Pando R., Pietri-Rouxel F., Fornès P., Tailleux L., Barrios Payán J. A., Pivert E., Bordat Y., Aguilar D., other authors. ( 2006;). Is adipose tissue a place for Mycobacterium tuberculosis persistence?. PLoS One 1: e43 [CrossRef] [PubMed].
-
Nobbs A. H., Lamont R. J., Jenkinson H. F.. ( 2009;). Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73: 407––450 [CrossRef] [PubMed].
-
Ordway D., Palanisamy G., Henao-Tamayo M., Smith E. E., Shanley C., Orme I. M., Basaraba R. J.. ( 2007;). The cellular immune response to Mycobacterium tuberculosis infection in the guinea pig. J Immunol 179: 2532––2541 [CrossRef] [PubMed].
-
Palanisamy G. S., Smith E. E., Shanley C. A., Ordway D. J., Orme I. M., Basaraba R. J.. ( 2008;). Disseminated disease severity as a measure of virulence of Mycobacterium tuberculosis in the guinea pig model. Tuberculosis (Edinb) 88: 295––306 [CrossRef] [PubMed].
-
Palanisamy G. S., DuTeau N., Eisenach K. D., Cave D. M., Theus S. A., Kreiswirth B. N., Basaraba R. J., Orme I. M.. ( 2009;). Clinical strains of Mycobacterium tuberculosis display a wide range of virulence in guinea pigs. Tuberculosis (Edinb) 89: 203––209 [CrossRef] [PubMed].
-
Pallen M. J.. ( 2002;). The ESAT-6/WXG100 superfamily - and a new Gram-positive secretion system?. Trends Microbiol 10: 209––212 [CrossRef] [PubMed].
-
Pethe K., Alonso S., Biet F., Delogu G., Brennan M. J., Locht C., Menozzi F. D.. ( 2001;). The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412: 190––194 [CrossRef] [PubMed].
-
Phillips J. R., Tripp T. J., Regelmann W. E., Schlievert P. M., Wangensteen O. D.. ( 2006;). Staphylococcal alpha-toxin causes increased tracheal epithelial permeability. Pediatr Pulmonol 41: 1146––1152 [CrossRef] [PubMed].
-
Powers M. E., Kim H. K., Wang Y., Bubeck Wardenburg J.. ( 2012;). ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J Infect Dis 206: 352––356 [CrossRef] [PubMed].
-
Richter J. F., Gitter A. H., Günzel D., Weiss S., Mohamed W., Chakraborty T., Fromm M., Schulzke J. D.. ( 2009;). Listeriolysin O affects barrier function and induces chloride secretion in HT-29/B6 colon epithelial cells. Am J Physiol Gastrointest Liver Physiol 296: G1350––G1359 [CrossRef] [PubMed].
-
Ryndak M., Wang S., Smith I.. ( 2008;). PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol 16: 528––534 [CrossRef] [PubMed].
-
Ryndak M. B., Singh K. K., Peng Z., Zolla-Pazner S., Li H., Meng L., Laal S.. ( 2014;). Transcriptional profiling of Mycobacterium tuberculosis replicating ex vivo in blood from HIV- and HIV+ subjects. PLoS One 9: e94939 [CrossRef] [PubMed].
-
Ryndak M. B., Singh K. K., Peng Z., Laal S.. ( 2015;). Transcriptional profile of Mycobacterium tuberculosis replicating in type II alveolar epithelial cells. PLoS One 10: e0123745 [CrossRef] [PubMed].
-
Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D., other authors. ( 2003;). Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198: 693––704 [CrossRef] [PubMed].
-
Sinha B., François P. P., Nüsse O., Foti M., Hartford O. M., Vaudaux P., Foster T. J., Lew D. P., Herrmann M., Krause K. H.. ( 1999;). Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin α5β1. Cell Microbiol 1: 101––117 [CrossRef] [PubMed].
-
Soong G., Martin F. J., Chun J., Cohen T. S., Ahn D. S., Prince A.. ( 2011;). Staphylococcus aureus protein A mediates invasion across airway epithelial cells through activation of RhoA GTPase signaling and proteolytic activity. J Biol Chem 286: 35891––35898 [CrossRef] [PubMed].
-
Suárez M., González-Zorn B., Vega Y., Chico-Calero I., Vázquez-Boland J. A.. ( 2001;). A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cell Microbiol 3: 853––864 [CrossRef] [PubMed].
-
Vidal Pessolani M. C., de Melo Marques M. A., Reddy V. M., Locht C., Menozzi F. D.. ( 2003;). Systemic dissemination in tuberculosis and leprosy: do mycobacterial adhesins play a role?. Microbes Infect 5: 677––684 [CrossRef] [PubMed].
-
Vir P., Gupta D., Agarwal R., Verma I.. ( 2014;). Interaction of alveolar epithelial cells with CFP21, a mycobacterial cutinase-like enzyme. Mol Cell Biochem 396: 187––199 [CrossRef] [PubMed].
-
Wolf A. J., Desvignes L., Linas B., Banaiee N., Tamura T., Takatsu K., Ernst J. D.. ( 2008;). Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med 205: 105––115 [CrossRef] [PubMed].

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/jmm/10.1099/jmm.0.000238dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/jmm AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/jmm/10.1099/jmm.0.000238dcterms_title,dcterms_subject-pub_serialIdent:journal/jmm AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....