1887

Abstract

, spp. and spp. are three of the pathogens most frequently involved in infections of cancer patients, and the production of -lactamases is a major mechanism of resistance due to its wide diversity of existing enzymes. Therefore, the aim of the present study was to investigate the microbiological profile and data related to patients and infections, and to search for -lactamase genes in bacterial isolates from hospitalized cancer patients in a hospital in Recife, Pernambuco, Brazil. A total of 169 isolates were recovered between 2012 and 2014, of which 58 were , 36 were spp. and 75 were spp. A high percentage of carbapenem resistance was observed in and spp. Among the carbapenem-resistant bacteria, the gene was detected in (35.5 %) and spp. (3.8 %), while was detected in (25.8 %) only. Among the third- and fourth-generation cephalosporin-resistant strains, in spp. we detected the genes (30.6 %), (58.3 %) and (5.6 %), and in spp. only (25.9 %). This the first report of an gene carrier that has been isolated in Brazil. The most frequent cancer types were bowel tumour [14.8 %; 95 % confidence interval (CI) 9.8–21.1 %], breast cancer (13.6 %; CI 8.8–19.7 %) and prostate cancer (11.2%; CI 6.9–17.0 %). These results therefore provide knowledge of susceptibility profile and resistance mechanisms and thus can contribute to the strategic formulation of hospital infection control plans and the rational use of antimicrobials, reducing mortality from infection levels in cancer patients.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000280
2016-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/7/658.html?itemId=/content/journal/jmm/10.1099/jmm.0.000280&mimeType=html&fmt=ahah

References

  1. AL-Thahab A. A. L. 2013; Molecular detection of extended-spectrum beta-lactamases in clinical isolates of Acinetobacter baumannii . J Biol Agric Healthc 3:32–29
    [Google Scholar]
  2. Andria N., Henig O., Kotler O., Domchenko A., Oren I., Zuckerman T., Ofran Y., Fraser D., Paul M. 2015; Mortality burden related to infection with carbapenem-resistant Gram-negative bacteria among haematological cancer patients: a retrospective cohort study. J Antimicrob Chemother 70:3146–3153 [View Article][PubMed]
    [Google Scholar]
  3. Araujo M. R. E. 2012; Hemoculturas: recomendações de coleta, processamento e interpretação dos resultados. J Infect Control 1:08–19
    [Google Scholar]
  4. Bassetti M., Righi E. 2013; Multidrug-resistant bacteria: what is the threat?. Hematology Am Soc Hematol Educ Program 2013:428–432 [View Article][PubMed]
    [Google Scholar]
  5. Ministério da Saúde Brasil 2015; Internações segundo Lista Morbidade CID-10. Capítulo CID-10: II. Neoplasias (tumores). Período: Novembro/2012-Abril/2014. Ministério Da Saúde - Sistema De Informa çõ es Hospitalares Do SUS (SIH/SUS) [Accessed July 2015] Available from http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sih/cnv/nipe.def
    [Google Scholar]
  6. CDC 2013 Antibiotic resistance threats in the United States, 2013 Atlanta, Georgia: Centers for Disease Control and Prevention; [Accessed February 2016] Available from www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf
    [Google Scholar]
  7. Cabral A. B., Melo R. C., Maciel M. A., Lopes A. C. 2012; Multidrug resistance genes, including bla(KPC) and bla(CTX)-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil. Rev Soc Bras Med Trop 45:572–578 [View Article][PubMed]
    [Google Scholar]
  8. Cavalcanti F. L., Almeida A. C., Vilela M. A., Morais M. M., Morais Junior M. A. 2012; Changing the epidemiology of carbapenem-resistant Pseudomonas aeruginosa in a Brazilian teaching hospital: the replacement of São Paulo metallo-β-lactamase-producing isolates. Mem Inst Oswaldo Cruz 107:420–423 [View Article][PubMed]
    [Google Scholar]
  9. Chaudhary M., Payasi A. 2014; Molecular characterization and in vitro susceptibilities of β-lactamase producing Escherichia coli, Klebsiella species, Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus to CSE1034 and other β-lactams. Asian Pac J Trop Med 7S1:S217–223 [View Article][PubMed]
    [Google Scholar]
  10. CLSI 2014 Performance Standards for Antimicrobial Susceptibility. Testing; Twenty-Fourth Informational Supplement. CLSI document M100-S24 , pp. 50–63 Wayne, PA: Clinical and Laboratory Standards Institute;
  11. de Melo M. E., Cabral A. B., Maciel M. A., da Silveira V. M., de Lopes A. C. S. 2011; Phylogenetic groups among Klebsiella pneumoniae isolates from Brazil: relationship with antimicrobial resistance and origin. Curr Microbiol 62:1596–1601 [View Article][PubMed]
    [Google Scholar]
  12. de Melo R. C. A., de Barros E. M., Loureiro N. G., de Melo H. R., Maciel M. A., Souza Lopes A. C., Melo R. C. A., Melo R. C. A., Lopes A. C. S. 2014; Presence of fimH, mrkD, and irp2 virulence genes in KPC-2-producing Klebsiella pneumoniae isolates in Recife-PE, Brazil. Curr Microbiol 69:824–831 [View Article][PubMed]
    [Google Scholar]
  13. Dong F., Xu X. W., Song W. Q., P., Yu S. J., Yang Y. H., Shen X. Z. 2008; Characterization of multidrug-resistant and metallo-beta-lactamase-producing Pseudomonas aeruginosa isolates from a paediatric clinic in China. Chin Med J 121:1611–1616[PubMed]
    [Google Scholar]
  14. Duan H., Chai T., Liu J., Zhang X., Qi C., Gao J., Wang Y., Cai Y., Miao Z. et al. 2009; Source identification of airborne Escherichia coli of swine house surroundings using ERIC-PCR and REP-PCR. Environ Res 109:511–517 [View Article][PubMed]
    [Google Scholar]
  15. Fernandes T. A., Pereira C. A., Petrili A. S., Pignatari A. C. 2010; Molecular characterization of carbapenem-resistant and metallo-beta-lactamase-producing Pseudomonas aeruginosa isolated from blood cultures from children and teenagers with cancer. Rev Soc Bras Med Trop 43:372–376[PubMed] [Crossref]
    [Google Scholar]
  16. Figueiredo E. A., Ramos H., Maciel M. A., Vilar M. C., Loureiro N. G., Pereira R. G. 2007; Pseudomonas aeruginosa : frequency of resistance to multiple drugs and cross-resistance between antimicrobials in Recife/PE. Rev Bras Ter Intensiva 19:421–427[PubMed] [Crossref]
    [Google Scholar]
  17. Fukuta Y., Muder R. R., Agha M. E., Clarke L. G., Wagener M. M., Hensler A. M., Doi Y. 2013; Risk factors for acquisition of multidrug-resistant Acinetobacter baumannii among cancer patients. Am J Infect Control 41:1249–1252 [View Article][PubMed]
    [Google Scholar]
  18. Gales A. C., Menezes L. C., Silbert S., Sader H. S. 2003; Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-beta-lactamase. J Antimicrob Chemother 52:699–702 [View Article][PubMed]
    [Google Scholar]
  19. Ghamgosha M., Shahreki Zahedani S., Kafilzadeh F., Bameri Z. 2014; Metallo-beta-lactamase genes Vim-1, Spm-1 and Imp-1 in Pseudomonas aeruginosa isolated from Zahedan hospitals. Int J Infect 1:e19635 [View Article]
    [Google Scholar]
  20. González L. J., Moreno D. M., Bonomo R. A., Vila A. J. 2014; Host-specific enzyme-substrate interactions in SPM-1 metallo-β-lactamase are modulated by second sphere residues. PLoS Pathog 10:e1003817 [View Article][PubMed]
    [Google Scholar]
  21. Gudiol C., Calatayud L., Garcia-Vidal C., Lora-Tamayo J., Cisnal M., Duarte R., Arnan M., Marin M., Carratalà J. et al. 2010; Bacteraemia due to extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) in cancer patients: clinical features, risk factors, molecular epidemiology and outcome. J Antimicrob Chemother 65:333–341 [View Article][PubMed]
    [Google Scholar]
  22. Guzmán-Blanco M., Labarca J. A., Villegas M. V., Gotuzzo E. Latin America Working Group on Bacterial Resistance 2014; Extended spectrum β -lactamase producers among nosocomial Enterobacteriaceae in Latin America. Braz J Infect Dis 18:421–433 [View Article][PubMed]
    [Google Scholar]
  23. Hafiane A., Ravaoarinoro M. 2008; Différentes méthodes de typage des souches de Pseudomonas aeruginosa isolées des patients atteints de mucoviscidose. Med Mal Infect 38:238–247 [View Article][PubMed]
    [Google Scholar]
  24. Hinrichsen S. L., Falcão E., Vilella T. A. S., Lira C., Santos-Junior B. J., Cruz P. W. S. 2014; Occurrence of Acinetobacter in two private tertiary hospitals in northeastern Brazil. Rev Panam Infectol 16:174–179
    [Google Scholar]
  25. Jácome P. R. L. A., Alves L. R., Cabral A. B., Lopes A. C. S., Maciel M. A. V, Jácome P. R. L. A. 2012a; Phenotypic and molecular characterization of antimicrobial resistance and virulence factors in Pseudomonas aeruginosa clinical isolates from Recife, State of Pernambuco, Brazil. Rev Soc Bras Med Trop 45:707–712 [View Article]
    [Google Scholar]
  26. Jácome P. R. L. A., Alves L. R., Cabral A. B., Lopes A. C. S., Maciel M. A. V. 2012b; First Report of KPC-producing Pseudomonas aeruginosa in Brazil. Antimicrob Agents Chemother 56:4990 [View Article]
    [Google Scholar]
  27. Kosmidis C. I., Chandrasekar P. H. 2012; Management of Gram-positive bacterial infections in patients with cancer. Leuk Lymphoma 53:8–18 [View Article][PubMed]
    [Google Scholar]
  28. Lee J. Y., Lim M. H., Heo S. T., Ko K. S. 2012; Repeated isolation of Pseudomonas aeruginosa isolates resistant to both polymyxins and carbapenems from 1 patient. Diagn Microbiol Infect Dis 72:267–271 [View Article][PubMed]
    [Google Scholar]
  29. Magill S. S., Edwards J. R., Bamberg W., Beldavs Z. G., Dumyati G., Kainer M. A., Lynfield R., Maloney M., McAllister-Hollod L. et al. 2014; Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370:1198–1208 [View Article][PubMed]
    [Google Scholar]
  30. Marín M., Gudiol C., Garcia-Vidal C., Ardanuy C., Carratalà J. 2014; Bloodstream infections in patients with solid tumors: epidemiology, antibiotic therapy, and outcomes in 528 episodes in a single cancer center. Medicine 93:143–149 [View Article][PubMed]
    [Google Scholar]
  31. Maschmeyer G., Haas A. 2008; The epidemiology and treatment of infections in cancer patients. Int J Antimicrob Agents 31:193–197 [View Article][PubMed]
    [Google Scholar]
  32. Miedema K. G., Winter R. H., Ammann R. A., Droz S., Spanjaard L., de Bont E. S., Kamps W. A., van de Wetering M. D., Tissing W. J. 2013; Bacteria causing bacteremia in pediatric cancer patients presenting with febrile neutropenia-species distribution and susceptibility patterns. Support Care Cancer 21:2417–2426 [View Article][PubMed]
    [Google Scholar]
  33. Moghnieh R., Estaitieh N., Mugharbil A., Jisr T., Abdallah D. I., Ziade F., Sinno L., Ibrahim A. 2015; Third generation cephalosporin resistant Enterobacteriaceae and multidrug resistant Gram-negative bacteria causing bacteremia in febrile neutropenia adult cancer patients in Lebanon, broad spectrum antibiotics use as a major risk factor, and correlation with poor prognosis. Front Cell Infect Microbiol 5:5–11 [View Article]
    [Google Scholar]
  34. Montassier E., Batard E., Gastinne T., Potel G., de La Cochetière M. F. 2013; Recent changes in bacteremia in patients with cancer: a systematic review of epidemiology and antibiotic resistance. Eur J Clin Microbiol Infect Dis 32:841–850 [Crossref]
    [Google Scholar]
  35. Murray P. R., Rosenthal K. S., Pfaller M. A. 2009 Microbiologia Médica [Tradução: Taborda, C. P. et al .]. – Brasil, Rio de Janeiro-RJ , pp. 991––10441118––1142 Elsevier:
    [Google Scholar]
  36. Paul M., Shani V., Muchtar E., Kariv G., Robenshtok E., Leibovici L. 2010; Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother 54:4851–4863 [View Article]
    [Google Scholar]
  37. Pfeifer Y., Cullik A., Witte W. 2010; Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol 300:371–379 [View Article][PubMed]
    [Google Scholar]
  38. Pongas G., Hamilos G., Rolston K. V., Kontoyiannis D. P. 2012; Formal adult infectious disease specialist consultations in the outpatient setting at a comprehensive cancer center (1998-2008): diverse and impactful. Support Care Cancer 20:261–265 [View Article][PubMed]
    [Google Scholar]
  39. Quiles M. G., Menezes L. C., Bauab K. C., Gumpl E. K., Rocchetti T. T., Palomo F. S., Carlesse F., Pignatari A. C. 2015; Diagnosis of bacteremia in pediatric oncologic patients by in-house real-time PCR. BMC Infect Dis 15:283 [View Article][PubMed]
    [Google Scholar]
  40. Quinones-Falconi F., Galicia-Velasco M., Marchiaro P., Mussi M. A., Ballerini V., Vila A. J., Viale A. M., Bermejo-Morales K., Limansky A. S. 2010; Emergence of Pseudomonas aeruginosa strains producing metallo-β-lactamases of the IMP-15 and VIM-2 types in Mexico. Clin Microbiol Infect 16:126–131 [View Article][PubMed]
    [Google Scholar]
  41. Ram R., Farbman L., Leibovici L., Raanani P., Yeshurun M., Vidal L., Gafter-Gvili A., Peck A., Shpilberg O., Paul M. 2012; Characteristics of initial compared with subsequent bacterial infections among hospitalised haemato-oncological patients. Int J Antimicrob Agents 40:123–126 [View Article][PubMed]
    [Google Scholar]
  42. Rasheed J. K., Anderson G. J., Yigit H., Queenan A. M., Doménech-Sánchez A., Swenson J. M., Biddle J. W., Ferraro M. J., Jacoby G. A. et al. 2000; Characterization of the extended-spectrum β-lactamase reference strain, Klebsiella pneumoniae K6 (ATCC 700603), which produces the novel enzyme SHV-18. Antimicrob Agents Chemother 44:2382–2388 [View Article][PubMed]
    [Google Scholar]
  43. Revelas A. 2012; Healthcare-associated infections: A public health problem. Niger Med J 53:59–64 [View Article][PubMed]
    [Google Scholar]
  44. Salabi A. E., Toleman M. A., Weeks J., Bruderer T., Frei R., Walsh T. R. 2010; First report of the metallo-lactamase SPM-1 in Europe. Antimicrob Agents Chemother 54:582 [View Article]
    [Google Scholar]
  45. Saladin M., Cao V. T., Lambert T., Donay J. L., Herrmann J. L., Ould-Hocine Z., Verdet C., Delisle F., Philippon A., Arlet G. 2002; Diversity of CTX-M β -lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol Lett 209:161–168 [View Article][PubMed]
    [Google Scholar]
  46. Shahcheraghi F., Abbasalipour M., Feizabadi M., Ebrahimipour G., Akbari N. 2011; Isolation and genetic characterization of metallo-β -lactamase and carbapenamase producing strains of Acinetobacter baumannii from patients at Tehran hospitals. Iran J Microbiol 3:68–74[PubMed]
    [Google Scholar]
  47. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J of Microbiol 33:2233–2239[PubMed]
    [Google Scholar]
  48. Vasudevan A., Memon B. I., Mukhopadhyay A., Li J., Tambyah P. A. 2015; The costs of nosocomial resistant gram negative intensive care unit infections among patients with the systemic inflammatory response syndrome: a propensity matched case control study. Antimicrob Resist Infect Control 4:3 [View Article][PubMed]
    [Google Scholar]
  49. Wang S. S., Lee N. Y., Hsueh P. R., Huang W. H., Tsui K. C., Lee H. C., Wu C. J., Chang C. M., Huang C. C., Ko W. C. 2011; Clinical manifestations and prognostic factors in cancer patients with bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli or Klebsiella pneumoniae . J Microbiol Immunol Infect 44:282–288 [View Article][PubMed]
    [Google Scholar]
  50. Winn J. R. W. C., Allen S. D., Janda W. M., Koneman E., Procop G., Schreckenberger P. C., Woods G. 2008; As Enterobacteriaceae e bacilos Gram-negativos não-fermentadores. In Koneman Diagnostico, Microbiológico, Texto E Atlas Colorido, 6th edn. , pp. 208–386 Brazil; Guanabara Koogan:
    [Google Scholar]
  51. Wisplinghoff H., Seifert H., Wenzel R. P., Edmond M. B. 2003; Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis 36:1103–1110 [View Article][PubMed]
    [Google Scholar]
  52. Yigit H., Queenan A. M., Anderson G. J., Domenech-Sanchez A., Biddle J. W., Steward C. D., Alberti S., Bush K., Tenover F. C. 2001; Novel carbapenem-hydrolyzing β -lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae . Antimicrob Agents Chemother 45:1151–1161 [View Article]
    [Google Scholar]
  53. Zafer M. M., Al-Agamy M. H., El-Mahallawy H. A., Amin M. A., Ashour M. S. E.-D. 2014; Antimicrobial resistance pattern and their beta-lactamase encoding genes among Pseudomonas aeruginosa strains isolated from cancer patients. BioMed Research International 2014:1–8 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000280
Loading
/content/journal/jmm/10.1099/jmm.0.000280
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error