1887

Abstract

is a leading aetiologic agent of nosocomial- and community-acquired infectious diseases worldwide. The public health concern regarding staphylococcal infections is inflated by the increasing occurrence of multidrug-resistant strains, e.g. multidrug- and meticillin-resistant (MDR MRSA). This study was designed to evaluate the intracellular killing, membrane-damaging and biofilm-inhibitory activities of nimbolide isolated from against MDR MRSA. antibacterial activity of nimbolide was determined by performing MIC, minimal bactericidal concentration (MBC) and time-kill kinetic studies. Bacterial membrane-damaging activity was determined by membrane perturbation and scanning electron microscopy (SEM) examination. Biofilm-inhibitory activities were determined by SEM. Cellular drug accumulation and assessments of intracellular activities were performed using Vero cell culture. SEM revealed that nimbolide caused significant membrane damage and lysis of the cells. The biofilm structure was disrupted, and the biofilm formation was greatly reduced in the presence of nimbolide as examined by SEM. The level of accumulation of nimbolide in Vero cells incubated for 24 h is relatively higher than that of ciprofloxacin and nalidixic acid ( / for nimbolide > ciprofloxacin and nalidixic acid). The viable number of intracellular was decreased [reduction of ~2 log c.f.u. (mg Vero cell protein)] in a time-dependent manner in the presence of nimbolide (4× MBC) that was comparable to that of tetracycline and nalidixic acid. The significant intracellular, biofilm-inhibitory and bacterial membrane-damaging activities of nimbolide demonstrated here suggested that it has potential as an effective antibacterial agent for the treatment of severe infections caused by MDR MRSA.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000343
2016-10-18
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/10/1205.html?itemId=/content/journal/jmm/10.1099/jmm.0.000343&mimeType=html&fmt=ahah

References

  1. Acharyya S., Sarkar P., Saha D. R., Patra A., Ramamurthy T., Bag P. K. 2015; Intracellular and membrane-damaging activities of methyl gallate isolated from Terminalia chebula against multidrug-resistant Shigella spp. J Med Microbiol 64:901–909 [View Article][PubMed]
    [Google Scholar]
  2. Archer G. L. 1998; Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis 26:1179–1181[PubMed] [CrossRef]
    [Google Scholar]
  3. Archer N. K., Mazaitis M. J., Costerton J. W., Leid J. G., Powers M. E., Shirtliff M. E. 2011; Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2:445–459 [View Article][PubMed]
    [Google Scholar]
  4. Bag P. K., Bhowmik P., Hajra T. K., Ramamurthy T., Sarkar P., Majumder M., Chowdhury G., Das S. C. 2008; Putative virulence traits and pathogenicity of Vibrio cholerae non-O1, non-O139 isolates from surface waters in Kolkata, India. Appl Environ Microbiol 74:5635–5644 [View Article][PubMed]
    [Google Scholar]
  5. Barcia-Macay M., Seral C., Mingeot-Leclercq M. P., Tulkens P. M., Van Bambeke F. 2006; Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob Agents Chemother 50:841–851 [View Article][PubMed]
    [Google Scholar]
  6. Biswas K., Chattopadhyay I., Banerjee R. K., Bandyopadhyay U. 2002; Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 82:1336–1345
    [Google Scholar]
  7. Carryn S., Van Bambeke F. M., Mingeot-Leclercq M. P., Tulkens P. M. 2002; Comparative intracellular (THP-1 macrophage) and extracellular activities of β-lactams, azithromycin, gentamicin, and fluoroquinolones against Listeria monocytogenes at clinically relevant concentrations. Antimicrob Agents Chemother 46:2095–2103 [View Article][PubMed]
    [Google Scholar]
  8. CLSI 2009 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard, 8th edn, M07-A8. Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  9. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 [View Article][PubMed]
    [Google Scholar]
  10. Davies D. 2003; Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122 [View Article][PubMed]
    [Google Scholar]
  11. De La Fuente R., Sonawane N. D., Arumainayagam D., Verkman A. S. 2006; Small molecules with antimicrobial activity against E. coli and P. aeruginosa identified by high-throughput screening. Br J Pharmacol 149:551–559 [View Article][PubMed]
    [Google Scholar]
  12. de Lencastre H., Oliveira D., Tomasz A. 2007; Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power. Curr Opin Microbiol 10:428–435 [View Article][PubMed]
    [Google Scholar]
  13. Guirao G. Y., Martínez Toldos M. C., Mora Peris B., Alonso Manzanares M. A., Gutiérrez Zufiaurre M. N., Martínez Andrés J. A., Muñoz Bellido J. L., García-Rodríguez J. A., Segovia Hernández M. 2001; Molecular diversity of quinolone resistance in genetically related clinical isolates of Staphylococcus aureus and susceptibility to newer quinolones. J Antimicrob Chemother 47:157–161 [View Article][PubMed]
    [Google Scholar]
  14. Gupta S. C., Prasad S., Reuter S., Kannappan R., Yadav V. R., Ravindran J., Hema P. S., Chaturvedi M. M., Nair M., Aggarwal B. B. 2010; Modification of cysteine 179 of IκBα kinase by nimbolide leads to down-regulation of NF-κB-regulated cell survival and proliferative proteins and sensitization of tumor cells to chemotherapeutic agents. J Biol Chem 285:35406–35417 [View Article][PubMed]
    [Google Scholar]
  15. Gupta K., Marques C. N., Petrova O. E., Sauer K. 2013; Antimicrobial tolerance of Pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two-component hybrid SagS. J Bacteriol 195:4975–4987 [View Article][PubMed]
    [Google Scholar]
  16. Hall-Stoodley L., Costerton J. W., Stoodley P. 2004; Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108 [View Article][PubMed]
    [Google Scholar]
  17. Huang E., Yousef A. E. 2014; The lipopeptide antibiotic paenibacterin binds to the bacterial outer membrane and exerts bactericidal activity through cytoplasmic membrane damage. Appl Environ Microbiol 80:2700–2704 [View Article][PubMed]
    [Google Scholar]
  18. Hurdle J. G., O'Neill A. J., Chopra I., Lee R. E. 2011; Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 9:62–75 [View Article][PubMed]
    [Google Scholar]
  19. Jacoby G. A. 2005; Mechanisms of resistance to quinolones. Clin Infect Dis 41:S120–S126 [View Article][PubMed]
    [Google Scholar]
  20. Kadurugamuwa J. L., Beveridge T. J. 1998; Delivery of the non-membrane-permeative antibiotic gentamicin into mammalian cells by using Shigella flexneri membrane vesicles. Antimicrob Agents Chemother 42:1476–1483[PubMed]
    [Google Scholar]
  21. Khalid S. A., Duddeck H., Gonzalez-Sierra M. 1989; Isolation and characterization of an antimalarial agent of the neem tree Azadirachta indica . J Nat Prod 52:922–926 [View Article][PubMed]
    [Google Scholar]
  22. Kumar K., Chopra S. 2013; New drugs for methicillin-resistant Staphylococcus aureus: an update. J Antimicrob Chemother 68:1465–1470 [View Article][PubMed]
    [Google Scholar]
  23. Lowy F. D. 1998; Staphylococcus aureus infections. N Engl J Med 339:520–532 [View Article][PubMed]
    [Google Scholar]
  24. Luppens S. B., Rombouts F. M., Abee T. 2002; The effect of the growth phase of Staphylococcus aureus on resistance to disinfectants in a suspension test. J Food Prot 65:124–129[PubMed] [CrossRef]
    [Google Scholar]
  25. Mah T. F., O'Toole G. A. 2001; Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39 [View Article][PubMed]
    [Google Scholar]
  26. Merlino J., Watson J., Rose B., Beard-Pegler M., Gottlieb T., Bradbury R., Harbour C. 2002; Detection and expression of methicillin/oxacillin resistance in multidrug-resistant and non-multidrug-resistant Staphylococcus aureus in central Sydney, Australia. J Antimicrob Chemother 49:793–801 [View Article][PubMed]
    [Google Scholar]
  27. NCCLS 1999 Methods for Determining Bactericidal Activity of Antimicrobial Agents Approved Guideline M26-A Wayne, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  28. Nielsen S. L., Obel N., Storgaard M., Andersen P. L. 1997; The effect of quinolones on the intracellular killing of Staphylococcus aureus in neutrophil granulocytes. J Antimicrob Chemother 39:617–622[PubMed] [CrossRef]
    [Google Scholar]
  29. Okpanyi S. N., Ezeukwu G. C. 1981; Anti-inflammatory and antipyretic activities of Azadirachta indica . Planta Med 41:34–39 [View Article][PubMed]
    [Google Scholar]
  30. Ríos J. L., Recio M. C. 2005; Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84 [View Article][PubMed]
    [Google Scholar]
  31. Rochanakij S., Thebtaranonth Y., Yenjai C., Yuthavong Y. 1985; Nimbolide, a constituent of Azadirachta indica, inhibits Plasmodium falciparum in culture. Southeast Asian J Trop Med Public Health 16:66–72[PubMed]
    [Google Scholar]
  32. Roy M. K., Kobori M., Takenaka M., Nakahara K., Shinmoto H., Isobe S., Tsushida T. 2007; Antiproliferative effect on human cancer cell lines after treatment with nimbolide extracted from an edible part of the neem tree (Azadirachta indica). Phytother Res 21:245–250 [View Article][PubMed]
    [Google Scholar]
  33. Singh R., Ray P., Das A., Sharma M. 2010; Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother 65:1955–1958 [View Article][PubMed]
    [Google Scholar]
  34. Situ H., Bobek L. A. 2000; In vitro assessment of antifungal therapeutic potential of salivary histatin-5, two variants of histatin-5, and salivary mucin (MUC7) domain 1. Antimicrob Agents Chemother 44:1485–1493 [View Article][PubMed]
    [Google Scholar]
  35. Thakurta P., Bhowmik P., Mukherjee S., Hajra T. K., Patra A., Bag P. K. 2007; Antibacterial, antisecretory and antihemorrhagic activity of Azadirachta indica used to treat cholera and diarrhea in India. J Ethnopharmacol 111:607–612 [View Article][PubMed]
    [Google Scholar]
  36. Tsao N., Luh T.-Y., Chou C.-K., Chang T.-Y., Wu J.-J., Liu C.-C., Lei H.-Y. 2002; In vitro action of carboxyfullerene. J Antimicrob Chemother 49:641–649 [View Article][PubMed]
    [Google Scholar]
  37. Tyagi P., Singh M., Kumari H., Kumari A., Mukhopadhyay K. 2015; Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One 10:e0121313 [View Article][PubMed]
    [Google Scholar]
  38. Weber S. G., Gold H. S., Hooper D. C., Karchmer A. W., Carmeli Y. 2003; Fluoroquinolones and the risk for methicillin-resistant Staphylococcus aureus in hospitalized patients. Emerg Infect Dis 9:1415–1422 [View Article][PubMed]
    [Google Scholar]
  39. Wei G. X., Campagna A. N., Bobek L. A. 2006; Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J Antimicrob Chemother 57:1100–1109 [View Article][PubMed]
    [Google Scholar]
  40. Witte W., Grimm H. 1992; Occurrence of quinolone resistance in Staphylococcus aureus from nosocomial infection. Epidemiol Infect 109:413–421 [View Article][PubMed]
    [Google Scholar]
  41. Zetola N., Francis J. S., Nuermberger E. L., Bishai W. R. 2005; Community-acquired methicillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis 5:275–286 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000343
Loading
/content/journal/jmm/10.1099/jmm.0.000343
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error