
f Structural and recovery mechanisms of 3D dental pulp cell microtissues challenged with Streptococcus mutans in extracellular matrix environment
- Authors: Gili Kaufman1 , Drago Skrtic1
-
- VIEW AFFILIATIONS
-
1 1Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, USA
- Correspondence Gili Kaufman [email protected]
- First Published Online: 16 November 2016, Journal of Medical Microbiology 65: 1332-1340, doi: 10.1099/jmm.0.000353
- Subject: Pathogenicity and Virulence/Host Response
- Received:
- Accepted:
- Cover date:




Structural and recovery mechanisms of 3D dental pulp cell microtissues challenged with Streptococcus mutans in extracellular matrix environment, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/jmm/65/11/1332_jmm000353-1.gif
-
Cariopathogen Streptococcus mutans exists in infected dental pulp of deciduous teeth and is frequently linked with heart diseases. Organotypic (3D) dental pulp stem cell (DPSC) cultures/microtissues, developed to mimic the physiological conditions in vivo, were utilized to assess the bacterial impact on their (i) 3D structural configuration and (ii) recovery mechanisms. The cultures, developed in extracellular matrix (ECM) bio-scaffold (Matrigel™), interacted with WT and GFP-tagged bacterial biofilms by permitting their infiltration through the ECM. Challenged cell constructs were visualized by F-actin/nuclei staining. Their pluripotency (Sox2) and differentiation (osteocalcin) markers were assessed by immunocytochemistry. Secreted mineral was detected by alizarin red, and 3D structural arrangements were analysed by epi-fluorescence and confocal scanning microscopy. Bacterial biofilm/ECM-embedded DPSC interactions appeared in distinct areas of the microtissues. Bacterial attachment to the cell surface occurred without evidence of invasion. Surface architecture of the challenged versus unchallenged microtissues was apparently unaltered. However, significant increases in thickness (138.42 vs 106.51 µm) and bacterial penetration were detected in challenged structures causing canal-like microstructures with various diameters (12.94 –42.88 µm) and average diameter of 20.66 to 33.42 µm per microtissue. Challenged constructs expressed pluripotency and differentiation markers and secreted the mineral. Presented model shows strong potential for assessing pulp–pathogen interactions in vivo. S. mutans infiltrated and penetrated the microtissues but did not invade the cells or compromise major cell repair mechanisms. These findings would suggest reexamining the role of S. mutans as an endodontic pathogen and investigating DPSC resistance to its pathogenicity.
- Keyword(s): 3D microtissues, Streptococcus mutans, dental pulp stem cells, bacterial challenge, biofilm
-
Abbreviations: BD β-defensin DPSC dental pulp stem cell ECM extracellular matrix GFP green fluorescent protein LCSM laser confocal scanning microscope NO nitric oxide Sox2 SRY (sex determining region Y)-box 2 WapA wall-associated protein A TLR Toll-like receptor
© 2016 The Authors | Published by the Microbiology Society
-
Abranches J., Zeng L., Bélanger M., Rodrigues P. H., Simpson-Haidaris P. J., Akin D., Dunn W. A., Progulske-Fox A., Burne R. A..( 2009;). Invasion of human coronary artery endothelial cells by Streptococcus mutans OMZ175. . Oral Microbiol Immunol 24: 141––145. [CrossRef] [PubMed]
-
Abranches J., Miller J. H., Martinez A. R., Simpson-Haidaris P. J., Burne R. A., Lemos J. A..( 2011;). The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. . Infect Immun 79: 2277––2284. [CrossRef] [PubMed]
-
Ajdić D., McShan W. M., McLaughlin R. E., Savić G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S. et al.( 2002;). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. . Proc Natl Acad Sci U S A 99: 14434––14439. [CrossRef] [PubMed]
-
Al-Okla S., Chatenay-Rivauday C., Klein J. P., Wachsmann D..( 1999;). Involvement of alpha5beta1 integrins in interleukin 8 production induced by oral viridans streptococcal protein I/IIf in cultured endothelial cells. . Cell Microbiol 1: 157––168. [CrossRef] [PubMed]
-
Babu N. C., Gomes A. J..( 2011;). Systemic manifestations of oral diseases. . J Oral Maxillofac Pathol 15: 144––147. [CrossRef] [PubMed]
-
Bedran T. B., Azelmat J., Spolidorio D. P., Grenier D..( 2013;). Fibrinogen-induced Streptococcus mutans biofilm formation and adherence to endothelial cells. . Biomed Res Int 2013: 431––465.
-
Berlutti F., Catizone A., Ricci G., Frioni A., Natalizi T., Valenti P., Polimeni A..( 2010;). Streptococcus mutans and Streptococcus sobrinus are able to adhere and invade human gingival fibroblast cell line. . Int J Immunopathol Pharmacol 23: 1253––1260.[PubMed]
-
Bitoun J. P., Liao S., Yao X., Ahn S. J., Isoda R., Nguyen A. H., Brady L. J., Burne R. A., Abranches J., Wen Z. T..( 2012;). BrpA is involved in regulation of cell envelope stress responses in Streptococcus mutans. . Appl Environ Microbiol 78: 2914––2922. [CrossRef] [PubMed]
-
Chalmers N. I., Oh K., Hughes C. V., Pradhan N., Kanasi E., Ehrlich Y., Dewhirst F. E., Tanner A. C..( 2015;). Pulp and plaque microbiotas of children with severe early childhood caries. . J Oral Microbiol 7: 25951. [CrossRef] [PubMed]
-
da Silva L. A., Nelson-Filho P., Faria G., de Souza-Gugelmin M. C., Ito I. Y..( 2006;). Bacterial profile in primary teeth with necrotic pulp and periapical lesions. . Braz Dent J 17: 144––148. [CrossRef] [PubMed]
-
Damé-Teixeira N., Arthur R. A., Parolo C. C., Maltz M..( 2014;). Genotypic diversity and virulence traits of Streptococcus mutans isolated from carious dentin after partial caries removal and sealing. . Scientific World J 2014: 165201. [CrossRef] [PubMed]
-
Davey M. E., O'toole G. A..( 2000;). Microbial biofilms: from ecology to molecular genetics. . Microbiol Mol Biol Rev 64: 847––867. [CrossRef] [PubMed]
-
Farges J.-C., Alliot-Licht B., Renard E., Ducret M., Gaudin A., Smith A. J., Cooper P. R..( 2015a;). Dental pulp defence and repair mechanisms in dental caries. . Mediators Inflamm 2015: 1––16. [CrossRef]
-
Farges J.-C., Bellanger A., Ducret M., Aubert-Foucher E., Richard B., Alliot-Licht B., Bleicher F., Carrouel F..( 2015b;). Human odontoblast-like cells produce nitric oxide with antibacterial activity upon TLR2 activation. . Front Physiol 6: 185. [CrossRef]
-
Gambino M., Cappitelli F..( 2016;). Mini-review: biofilm responses to oxidative stress. . Biofouling 32: 167––178. [CrossRef] [PubMed]
-
Goldberg M., Njeh A., Uzunoglu E..( 2015;). Is pulp inflammation a prerequisite for pulp healing and regeneration?. Mediators Inflamm 2015: 347649. [CrossRef] [PubMed]
-
Hahn C. L., Best A. M., Tew J. G..( 2000;). Cytokine induction by Streptococcus mutans and pulpal pathogenesis. . Infect Immun 68: 6785––6789. [CrossRef] [PubMed]
-
Han T. K., Zhang C., Dao M. L..( 2006;). Identification and characterization of collagen-binding activity in Streptococcus mutans wall-associated protein: a possible implication in dental root caries and endocarditis. . Biochem Biophys Res Commun 343: 787––792. [CrossRef] [PubMed]
-
Jackson R. J., Lim D. V., Dao M. L..( 1997;). Identification and analysis of a collagenolytic activity in Streptococcus mutans. . Curr Microbiol 34: 49––54. [CrossRef] [PubMed]
-
Jung C. J., Yeh C. Y., Shun C. T., Hsu R. B., Cheng H. W., Lin C. S., Chia J. S..( 2012;). Platelets enhance biofilm formation and resistance of endocarditis-inducing streptococci on the injured heart valve. . J Infect Dis 205: 1066––1075. [CrossRef] [PubMed]
-
Kaufman G., Nunes L., Eftimiades A., Tutak W..( 2016;). Enhancing 3D structure of adherent gingival fibroblasts and spheroids via fibrous protein-based hydrogel cover. . Cells Tissues Organs doi:10.1159/000446821 [CrossRef] [PubMed]
-
Kleinman H. K., Martin G. R..( 2005;). Matrigel: basement membrane matrix with biological activity. . Semin Cancer Biol 15: 378––386. [CrossRef] [PubMed]
-
Krzyściak W., Jurczak A., Kościelniak D., Bystrowska B., Skalniak A..( 2014;). The virulence of Streptococcus mutans and the ability to form biofilms. . Eur J Clin Microbiol Infect Dis 33: 499––515. [CrossRef] [PubMed]
-
Lee G. Y., Kenny P. A., Lee E. H., Bissell M. J..( 2007;). Three-dimensional culture models of normal and malignant breast epithelial cells. . Nat Methods 4: 359––365. [CrossRef] [PubMed]
-
Li X., Kolltveit K. M., Tronstad L., Olsen I..( 2000;). Systemic diseases caused by oral infection. . Clin Microbiol Rev 13: 547––558. [CrossRef] [PubMed]
-
Liu C., Worthington R. J., Melander C., Wu H..( 2011;). A new small molecule specifically inhibits the cariogenic bacterium Streptococcus mutans in multispecies biofilms. . Antimicrob Agents Chemother 55: 2679––2687. [CrossRef] [PubMed]
-
Love R. M., Jenkinson H. F..( 2002;). Invasion of dentinal tubules by oral bacteria. . Crit Rev Oral Biol Med 13: 171––183.[PubMed] [CrossRef]
-
Love R. M., McMillan M. D., Jenkinson H. F..( 1997;). Invasion of dentinal tubules by oral streptococci is associated with collagen recognition mediated by the antigen I/II family of polypeptides. . Infect Immun 65: 5157––5164.[PubMed]
-
Ma M., Baumgartner M..( 2013;). Filopodia and membrane blebs drive efficient matrix invasion of macrophages transformed by the intracellular parasite Theileria annulata. . PLoS One 8: e75577. [CrossRef] [PubMed]
-
Mattila K. J., Valle M. S., Nieminen M. S., Valtonen V. V., Hietaniemi K. L..( 1993;). Dental infections and coronary atherosclerosis. . Atherosclerosis 103: 205––211. [CrossRef] [PubMed]
-
Miller-Torbert T. A., Sharma S., Holt R. G..( 2008;). Inactivation of a gene for a fibronectin-binding protein of the oral bacterium Streptococcus mutans partially impairs its adherence to fibronectin. . Microb Pathog 45: 53––59. [CrossRef] [PubMed]
-
Nakano K., Fujita K., Nishimura K., Nomura R., Ooshima T..( 2005;). Contribution of biofilm regulatory protein A of Streptococcus mutans, to systemic virulence. . Microbes Infect 7: 1246––1255. [CrossRef] [PubMed]
-
Nobbs A. H., Lamont R. J., Jenkinson H. F..( 2009;). Streptococcus adherence and colonization. . Microbiol Mol Biol Rev 73: 407––450. [CrossRef] [PubMed]
-
Nomura R., Ogaya Y., Nakano K..( 2016;). Contribution of the collagen-binding proteins of Streptococcus mutans to bacterial colonization of inflamed dental pulp. . PLoS One 11: 1––13. [CrossRef] [PubMed]
-
Petersen P. E..( 2003;). The World Oral Health Report 2003: continuous improvement of oral health in the 21st century – the approach of the WHO Global Oral Health Programme. . Community Dent Oral Epidemiol 31: 3––23.[PubMed] [CrossRef]
-
Rôças I. N., Lima K. C., Assunção I. V., Gomes P. N., Bracks I. V., Siqueira J. F..( 2015;). Advanced caries microbiota in teeth with irreversible pulpitis. . J Endod 41: 1450––1455. [CrossRef] [PubMed]
-
Ronay V., Belibasakis G. N., Attin T., Schmidlin P. R., Bostanci N..( 2014;). Expression of embryonic stem cell markers and osteogenic differentiation potential in cells derived from periodontal granulation tissue. . Cell Biol Int 38: 179––186. [CrossRef] [PubMed]
-
Schlaermann P., Toelle B., Berger H., Schmidt S. C., Glanemann M., Ordemann J., Bartfeld S., Mollenkopf H. J., Meyer T. F..( 2016;). A novel human gastric primary cell culture system for modelling Helicobacter pylori infection in vitro. . Gut 65: 202––213. [CrossRef] [PubMed]
-
Song W., Shi Y., Xiao M., Lu H., Qu T., Li P., Wu G., Tian Y..( 2009;). In vitro bactericidal activity of recombinant human beta-defensin-3 against pathogenic bacterial strains in human tooth root canal. . Int J Antimicrob Agents 33: 237––243. [CrossRef] [PubMed]
-
Vernier A., Diab M., Soell M., Haan-Archipoff G., Beretz A., Wachsmann D., Klein J. P..( 1996;). Cytokine production by human epithelial and endothelial cells following exposure to oral viridans streptococci involves lectin interactions between bacteria and cell surface receptors. . Infect Immun 64: 3016––3022.[PubMed]
-
Wang F., Wu L. A., Li W., Yang Y., Guo F., Gao Q., Chuang H. H., Shoff L., Wang W. et al.( 2013;). Immortalized mouse dental papilla mesenchymal cells preserve odontoblastic phenotype and respond to bone morphogenetic protein 2. . In Vitro Cell Dev Biol Anim 49: 626––637. [CrossRef] [PubMed]
-
Wen Z. T., Baker H. V., Burne R. A..( 2006;). Influence of BrpA on critical virulence attributes of Streptococcus mutans. . J Bacteriol 188: 2983––2992. [CrossRef] [PubMed]
-
Westerlund B., Korhonen T. K..( 1993;). Bacterial proteins binding to the mammalian extracellular matrix. . Mol Microbiol 9: 687––694. [CrossRef] [PubMed]
-
Zhang W., Yelick P. C..( 2010;). Vital pulp therapy – current progress of dental pulp regeneration and revascularization. . Int J Dent 2010: 856087. [CrossRef] [PubMed]
-
Zijnge V., van Leeuwen M. B., Degener J. E., Abbas F., Thurnheer T., Gmür R., Harmsen H. J..( 2010;). Oral biofilm architecture on natural teeth. . PLoS One 5: e9321. [CrossRef] [PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/jmm/10.1099/jmm.0.000353dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/jmm AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/jmm/10.1099/jmm.0.000353dcterms_title,dcterms_subject-pub_serialIdent:journal/jmm AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....