
f Quantitative and structural analyses of the in vitro and ex vivo biofilm-forming ability of dermatophytes
- Authors: Raimunda Sâmia Nogueira Brilhante1 , Edmilson Emanuel Monteiro Correia1 , Glaucia Morgana de Melo Guedes1 , Vandbergue Santos Pereira1 , Jonathas Sales de Oliveira1 , Silviane Praciano Bandeira1 , Lucas Pereira de Alencar1 , Ana Raquel Colares de Andrade1 , Débora de Souza Collares Maia Castelo-Branco1 , Rossana de Aguiar Cordeiro1 , Adriana de Queiroz Pinheiro2 , Lúcio Jackson Queiroz Chaves1 , Waldemiro de Aquino Pereira Neto1 , José Júlio Costa Sidrim1 , Marcos Fábio Gadelha Rocha1,2
-
- VIEW AFFILIATIONS
-
1 1Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil 2 2School of Veterinary, Postgraduate Program in Veterinary Science, State University of Ceará, Fortaleza-CE, Brazil
- *Correspondence: Raimunda Sâmia Nogueira Brilhante, [email protected] or [email protected]
- First Published Online: 15 July 2017, Journal of Medical Microbiology 66: 1045-1052, doi: 10.1099/jmm.0.000528
- Subject: Pathogenicity and Virulence/Host Response
- Received:
- Accepted:
- Cover date:




Quantitative and structural analyses of the in vitro and ex vivo biofilm-forming ability of dermatophytes, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/jmm/66/7/1045_jmm000528-1.gif
-
Purpose. The aim of this study was to evaluate the in vitro and ex vivo biofilm-forming ability of dermatophytes on a nail fragment.
Methodology. Initially, four isolates of Trichophyton rubrum, six of Trichophyton tonsurans, three of Trichophyton mentagrophytes, ten of Microsporum canis and three of Microsporum gypseum were tested for production biomass by crystal violet assay. Then, one strain per species presenting the best biofilm production was chosen for further studies by optical microscopy (Congo red staining), confocal laser scanning (LIVE/DEAD staining) and scanning electron (secondary electron) microscopy.
Results. Biomass quantification by crystal violet assay, optical microscope images of Congo red staining, confocal microscope and scanning electron microscope images revealed that all species studied are able to form biofilms both in vitro and ex vivo, with variable density and architecture. M. gypseum, T. rubrum and T. tonsurans produced robust biofilms, with abundant matrix and biomass, while M. canis produced the weakest biofilms compared to other species.
Conclusion. This study sheds light on biofilms of different dermatophyte species, which will contribute to a better understanding of the pathophysiology of dermatophytosis. Further studies of this type are necessary to investigate the processes involved in the formation and composition of dermatophyte biofilms.
-
Two supplementary figures are available with the online Supplementary Material.
- Keyword(s): ex vivo, dermatophytes, biofilm, in vitro
© 2017 The Authors | Published by the Microbiology Society
-
1. Chabasse D. Dermatophytes: where do they come from? How did they turn to parasites?. J Mycol Med 2008;18:27–35[CrossRef]
-
2. Molina de Diego A. Clinical, diagnostic and therapeutic aspects of dermatophytosis [Article in Spanish]. Enferm Infecc Microbiol Clin 2011;29:33–39 [CrossRef][PubMed]
-
4. Ramage G, Rajendran R, Sherry L, Williams C. Fungal biofilm resistance. Int J Microbiol 2012;2012:1–14 [CrossRef]
-
5. Harding MW, Marques LL, Howard RJ, Olson ME. Can filamentous fungi form biofilms?. Trends Microbiol 2009;17:475–480 [CrossRef][PubMed]
-
6. Pitangui NS, Sardi JC, Silva JF, Benaducci T, Moraes da Silva RA et al. Adhesion of Histoplasma capsulatum to pneumocytes and biofilm formation on an abiotic surface. Biofouling 2012;28:711–718 [CrossRef][PubMed]
-
7. Brilhante RS, de Lima RA, Marques FJ, Silva NF, Caetano ÉP et al. Histoplasma capsulatum in planktonic and biofilm forms: in vitro susceptibility to amphotericin B, itraconazole and farnesol. J Med Microbiol 2015;64:394–399 [CrossRef][PubMed]
-
8. Gao L, Jiang S, Sun Y, Deng M, Wu Q et al. Evaluation of the effects of photodynamic therapy alone and combined with standard antifungal therapy on planktonic cells and biofilms of Fusarium spp. and Exophiala spp. Front Microbiol 2016;7:617 [CrossRef][PubMed]
-
9. Burkhart CN, Burkhart CG, Gupta AK. Dermatophytoma: recalcitrance to treatment because of existence of fungal biofilm. J Am Acad Dermatol 2002;47:629–631 [CrossRef][PubMed]
-
10. Costa-Orlandi CB, Sardi JCO, Santos CT, Fusco-Almeida AM, Mendes-Giannini MJS. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms. Biofouling 2014;6:719–727[CrossRef]
-
11. dos Santos RM, Dias-Souza MV. Effectiveness of five antidandruff cosmetic formulations against planktonic cells and biofilms of dermatophytes. Saudi J Biol Sci 2017;24:331–337 [CrossRef][PubMed]
-
12. De Hoog GS, Guarro J, Gené J, Figueras MJ. Atlas of Clinical Fungi, 4th ed. Utrecht: Centraal Bureau voor Schimmelcultures; 2000
-
13. Cordeiro RA, de Oliveira JS, Castelo-Branco DS, Teixeira CE, Marques FJ et al. Candida tropicalis isolates obtained from veterinary sources show resistance to azoles and produce virulence factors. Med Mycol 2015;53:145–152 [CrossRef][PubMed]
-
14. Castelo-Branco DS, Riello GB, Vasconcelos DC, Guedes GM, Serpa R et al. Farnesol increases the susceptibility of Burkholderia pseudomallei biofilm to antimicrobials used to treat melioidosis. J Appl Microbiol 2016;120:600–606 [CrossRef][PubMed]
-
15. de Aguiar Cordeiro R, Serpa R, Flávia Uchoa Alexandre C, de Farias Marques FJ, Vladia Silva de Melo C et al. Trichosporon inkin biofilms produce extracellular proteases and exhibit resistance to antifungals. J Med Microbiol 2015;64:1277–1286 [CrossRef][PubMed]
-
16. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M et al. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000;10:2395–2407 [CrossRef][PubMed]
-
18. Hayette MP, Sacheli R. Dermatophytosis, trends in epidemiology and diagnostic approach. Curr Fungal Infect Rep 2015;9:164–179 [CrossRef]
-
19. Brilhante RS, Cordeiro RA, Rocha MF, Monteiro AJ, Meireles TE et al. Tinea capitis in a dermatology center in the city of Fortaleza, Brazil: the role of Trichophyton tonsurans. Int J Dermatol 2004;43:575–579 [CrossRef][PubMed]
-
20. Ito A, Taniuchi A, May T, Kawata K, Okabe S. Increased antibiotic resistance of Escherichia coli in mature biofilms. Appl Environ Microbiol 2009;75:4093–4100 [CrossRef][PubMed]
-
22. Silva-Dias A, Miranda IM, Branco J, Monteiro-Soares M, Pina-Vaz C et al. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp. Front Microbiol 2015;6:205 [CrossRef][PubMed]
-
23. Zaias N, Rebell G. Chronic dermatophytosis caused by Trichophyton rubrum. J Am Acad Dermatol 1996;35:S17–S20 [CrossRef][PubMed]
-
24. Cordeiro RA, Brilhante RS, Rocha MF, Rabenhorsch SH, Moreira JL et al. Antifungal susceptibility and genetic similarity of sequential isolates of Trichophyton rubrum from an immunocompetent patient with chronic dermatophytosis. Clin Exp Dermatol 2006;31:122–124 [CrossRef][PubMed]
-
25. Venkatesan G, Ranjitsingh AJA, Murugesan AG, Gokulshankar S, Ranjith MS. Is the difference in keratinase activity of dermatophytes to different keratinaceous substrates an attribute of adaptation to parasitism?. Egypt Dermatol Online J 2010;1:6
-
26. Baldo A, Monod M, Mathy A, Cambier L, Bagut ET et al. Mechanisms of skin adherence and invasion by dermatophytes. Mycoses 2012;55:218–223 [CrossRef][PubMed]
-
27. Sharifzadeh A, Shokri H, Khosravi AR. In vitro evaluation of antifungal susceptibility and keratinase, elastase, lipase and DNase activities of different dermatophyte species isolated from clinical specimens in Iran. Mycoses 2016;59:710–719 [CrossRef][PubMed]
-
28. Zurita J, Hay RJ. Adherence of dermatophyte microconidia and arthroconidia to human keratinocytes in vitro. J Invest Dermatol 1987;89:529–534 [CrossRef][PubMed]
-
29. Gupta AK, Daigle D, Carviel JL. The role of biofilms in onychomycosis. J Am Acad Dermatol 2016;74:1241–1246 [CrossRef][PubMed]
-
30. Lebeaux D, Chauhan A, Rendueles O, Beloin C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2013;2:288–356 [CrossRef][PubMed]
-
31. Peres NT, Silva LG, Santos RS, Jacob TR, Persinoti GF et al. In vitro and ex vivo infection models help assess the molecular aspects of the interaction of Trichophyton rubrum with the host milieu. Med Mycol 2016;54:420–427 [CrossRef][PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/jmm/10.1099/jmm.0.000528dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/jmm AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/jmm/10.1099/jmm.0.000528dcterms_title,dcterms_subject-pub_serialIdent:journal/jmm AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....