
f High frequency of the combined presence of QRDR mutations and PMQR determinants in multidrug-resistant Klebsiella pneumoniae and Escherichia coli isolates from nosocomial and community-acquired infections
- Authors: Bruna Fuga Araújo1 , Paola Amaral de Campos1 , Sabrina Royer1 , Melina Lorraine Ferreira1 , Iara Rossi Gonçalves1 , Deivid William da Fonseca Batistão2 , Daiane Silva Resende3 , Cristiane Silveira de Brito1 , Paulo Pinto Gontijo-Filho1 , Rosineide Marques Ribas1
-
- VIEW AFFILIATIONS
-
1 1Institute of Biomedical Sciences (ICBIM), Laboratory of Molecular Microbiology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil 2 2School of Medicine, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil 3 3Faculty of João Pinheiro City, Minas Gerais, Brazil
- *Correspondence: Bruna Fuga Araújo, [email protected]
- First Published Online: 04 August 2017, Journal of Medical Microbiology 66: 1144-1150, doi: 10.1099/jmm.0.000551
- Subject: Clinical Microbiology
- Received:
- Accepted:
- Cover date:




High frequency of the combined presence of QRDR mutations and PMQR determinants in multidrug-resistant Klebsiella pneumoniae and Escherichia coli isolates from nosocomial and community-acquired infections, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/jmm/66/8/1144_jmm000551-1.gif
-
Plasmid-mediated quinolone resistance (PMQR) determinants combined with mutations in quinolone resistance-determining regions (QRDRs) and clonal dissemination were investigated in 40 fluoroquinolone-resistant Klebsiella pneumoniae and Escherichia coli isolates from nosocomial and community-acquired infections. We observed nucleotide substitutions in gyrA (Ser83Ile, Val37Leu, Lys154Arg, Ser171Ala, Ser19Asn, Ile198Val, Ser83Tyr, Ser83Leu, Asp87Asn and Asp87Gly) and parC genes (Ser80Ile, Glu84Lys, Ala129Ser, Val141Ala and Glu84Gly). Two novel substitutions were detected in the gyrA gene (Val37Leu and Ile198Val). The presence of PMQR genes predominated in community isolates (55.5 %). In addition to the frequent presence of the class 1 integron in isolates from community-acquired infections, the genetic similarity results obtained by PFGE showed high genomic diversity. This study suggests that management of multidrug-resistant Enterobacteriaceae isolates from the community are a possible source of genetic mobile elements that carry genes that confer resistance to fluoroquinolones. More attention should be paid to the surveillance of community-acquired infections.
-
One supplementary table and one supplementary figure are available with the online Supplementary Material.
- Keyword(s): multidrug-resistance, plasmid-mediated quinolone resistance (PMQR), Escherichia coli, Klebsiella pneumoniae, quinolone resistance determining regions (QRDR) mutations
© 2017 The Authors | Published by the Microbiology Society
-
1. Seyedpour SM, Eftekhar F. Quinolone susceptibility and detection of qnr and aac(6')-Ib-cr genes in community isolates of Klebsiella pneumoniae. Jundishapur J Microbiol 2014;7:e11136 [CrossRef][PubMed]
-
2. Piekarska K, Wołkowicz T, Zacharczuk K, Rzeczkowska M, Chróst A et al. Co-existence of plasmid-mediated quinolone resistance determinants and mutations in gyrA and parC among fluoroquinolone-resistant clinical Enterobacteriaceae isolated in a tertiary hospital in Warsaw, Poland. Int J Antimicrob Agents 2015;45:238–243 [CrossRef][PubMed]
-
3. Tanwar J, das S, Fatima Z, Hameed S. Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis 2014;2014:1–7 [CrossRef]
-
4. Ruppé Étienne, Woerther P-L, Barbier F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care 2015;5:21[CrossRef]
-
5. Dalhoff A. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip Perspect Infect Dis 2012;2012:1–37 [CrossRef][PubMed]
-
6. Rodríguez-Martínez JM, Cano ME, Velasco C, Martínez-Martínez L, Pascual A et al. Plasmid-mediated quinolone resistance: an update. J Infect Chemother 2011;17:149–182 [CrossRef][PubMed]
-
7. Martínez-Martínez L, Eliecer Cano M, Manuel Rodríguez-Martínez J, Calvo J, Pascual A. Plasmid-mediated quinolone resistance. Expert Rev Anti Infect Ther 2008;6:685–711 [CrossRef][PubMed]
-
8. Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis 2006;42:S82–S89 [CrossRef][PubMed]
-
9. Davey PG, Marwick C. Appropriate vs. inappropriate antimicrobial therapy. Clin Microbiol Infect 2008;14:15–21 [CrossRef][PubMed]
-
10. Zilberberg MD, Shorr AF, Micek ST, Vazquez-Guillamet C, Kollef MH. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care 2014;18:596 [CrossRef][PubMed]
-
11. Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res 2010;10:441–451 [CrossRef][PubMed]
-
12. Bouchillon S, Hoban DJ, Badal R, Hawser S. Fluoroquinolone resistance among gram-negative urinary tract pathogens: global smart program results, 2009-2010. Open Microbiol J 2012;6:74–78 [CrossRef][PubMed]
-
13. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268–281 [CrossRef][PubMed]
-
14. Gulen TA, Guner R, Celikbilek N, Keske S, Tasyaran M. Clinical importance and cost of bacteremia caused by nosocomial multi drug resistant Acinetobacter baumannii. Int J Infect Dis 2015;38:32–35 [CrossRef][PubMed]
-
15. Gilbert DN, Moellering RC, Eliopoulos GM, Sande MA. The Sanford Guide to Antimicrobial Therapy Sperryville, VA, Antimicrobial Therapy 2007; p.37
-
16. Lodise TP, Patel N, Kwa A, Graves J, Furuno JP et al. Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother 2007;51:3510–3515 [CrossRef][PubMed]
-
17. Schwarz S, Silley P, Simjee S, Woodford N, van Duijkeren E et al. Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother 2010;65:601–604 [CrossRef][PubMed]
-
18. Capuano VSC. Estudo comparativo de métodos fenotípicos e biomoleculares para determinação de resistência an antibióticos em cepas de Salmonella spp isoladas de coiro e carcaça de bovinos e produtos cárneos. Masters Dissertation. Universidade De São Paulo, Faculdade De Ciências Farmacêuticas. São Paulo 2012
-
19. CLSI Performance Standards for Antimicrobial Susceptibility Testing; Document M100-S24 Wayne, PA: Clinical and Laboratory Standards Institute; 2014
-
20. Galetti R. Estudo de Pseudomonas Aeruginosa Produtoras de Metalo-Beta-Lactamases e de Genes Envolvidos Na Resistência Aos Carbapenêmicos. 49 F Master Thesis - Faculdade De Ciências Farmacêuticas, Universidade De São Paulo, Ribeirão Preto, Brazil 2010
-
21. Sengupta S, Chattopadhyay MK, Grossart HP. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 2013;4:47 [CrossRef][PubMed]
-
22. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharmacol Ther 2015;40:277–283[PubMed]
-
23. Chakrabarty RP, Sultana M, Shehreen S, Akter S, Hossain MA. Contribution of target alteration, protection and efflux pump in achieving high ciprofloxacin resistance in Enterobacteriaceae. AMB Express 2016;6:126 [CrossRef][PubMed]
-
24. Rodríguez-Martínez JM, Machuca J, Cano ME, Calvo J, Martínez-Martínez L et al. Plasmid-mediated quinolone resistance: two decades on. Drug Resist Updat 2016;29:13–29 [CrossRef][PubMed]
-
25. Yang HY, Nam YS, Lee HJ. Prevalence of plasmid-mediated quinolone resistance genes among ciprofloxacin-nonsusceptible Escherichia coli and Klebsiella pneumoniae isolated from blood cultures in Korea. Can J Infect Dis Med Microbiol 2014;25:163–169[PubMed]
-
26. Bado I, Gutiérrez C, García-Fulgueiras V, Cordeiro NF, Araújo Pirez L et al. CTX-M-15 in combination with aac(6')-Ib-cr is the most prevalent mechanism of resistance both in Escherichia coli and Klebsiella pneumoniae, including K. pneumoniae ST258, in an ICU in Uruguay. J Glob Antimicrob Resist 2016;6:5–9 [CrossRef][PubMed]
-
28. Minarini LA, Darini AL. Mutations in the quinolone resistance-determining regions of gyrA and parC in Enterobacteriaceae isolates from Brazil. Braz J Microbiol 2012;43:1309–1314 [CrossRef][PubMed]
-
29. Norouzi A, Azizi O, Hosseini H, Skakibaie S, Shakibaie M. Amino acid substitution mutations analysis of gyrA and parC genes in clonal lineage of Klebsiella pneumoniae conferring high-level quinolone resistance. Res Infect Dis Trop Med 2014;2:109–117
-
30. Asadpour L. Study of amino acid alteration in graA & parC genes in quinolone resistant Klebsiella pneumoniae. Crescent J Med Biol Sci 2017;4:3–6
-
31. Martínez-Martínez L, Pascual A, García I, Tran J, Jacoby GA. Interaction of plasmid and host quinolone resistance. J Antimicrob Chemother 2003;51:1037–1039 [CrossRef][PubMed]
-
32. Jeong JY, Kim ES, Choi SH, Kwon HH, Lee SR et al. Effects of a plasmid-encoded qnrA1 determinant in Escherichia coli strains carrying chromosomal mutations in the acrAB efflux pump genes. Diagn Microbiol Infect Dis 2008;60:105–107 [CrossRef][PubMed]
-
33. Jacoby GA, Strahilevitz J, Hooper DC. Plasmid-mediated quinolone resistance. Microbiol Spectr 2014;2: doi:10.1128/microbiolspec.PLAS-0006-2013 [CrossRef][PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/jmm/10.1099/jmm.0.000551dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/jmm AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/jmm/10.1099/jmm.0.000551dcterms_title,dcterms_subject-pub_serialIdent:journal/jmm AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....