1887

Abstract

Two hundred and thirty-three nonduplicated clinical isolates of carbapenem-resistant Enterobacteriaceae were collected from four hospitals in Zhejiang, China. 45.1 % (105/233) strains were resistant to fosfomycin, among which plasmid-mediated fosfomycin-modifying enzymes , , and were positive, and the other genes were negative. 80 % (12/15) isolates were positive for 100 % (73/73) isolates were positive for . A conjugation experiment indicated that fosfomycin resistance could be transferred to an recipient strain successfully. Fosfomycin still exhibits partial activity in carbapenem-resistant Enterobacteriaceae, especially carbapenem-resistant . To our knowledge, plasmid-mediated fosfomycin-modifying enzymes account for the dominance in the carbapenem-resistant Enterobacteriaceae. Therefore, we need to pay attention to the plasmid-mediated fosfomycin-modifying enzymes and in and to prevent clonal dissemination in China.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000578
2017-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/66/9/1332.html?itemId=/content/journal/jmm/10.1099/jmm.0.000578&mimeType=html&fmt=ahah

References

  1. Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 2011; 53:60–67 [View Article][PubMed]
    [Google Scholar]
  2. Schultsz C, Geerlings S. Plasmid-mediated resistance in Enterobacteriaceae: changing landscape and implications for therapy. Drugs 2012; 72:1–16 [View Article][PubMed]
    [Google Scholar]
  3. Kastoris AC, Rafailidis PI, Vouloumanou EK, Gkegkes ID, Falagas ME. Synergy of fosfomycin with other antibiotics for Gram-positive and Gram-negative bacteria. Eur J Clin Pharmacol 2010; 66:359–368 [View Article][PubMed]
    [Google Scholar]
  4. Suárez JE, Mendoza MC. Plasmid-encoded fosfomycin resistance. Antimicrob Agents Chemother 1991; 35:791–795 [View Article][PubMed]
    [Google Scholar]
  5. Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis 2010; 10:43–50 [View Article][PubMed]
    [Google Scholar]
  6. Arca P, Rico M, Braña AF, Villar CJ, Hardisson C et al. Formation of an adduct between fosfomycin and glutathione: a new mechanism of antibiotic resistance in bacteria. Antimicrob Agents Chemother 1988; 32:1552–1556 [View Article][PubMed]
    [Google Scholar]
  7. Xu H, Miao V, Kwong W, Xia R, Davies J. Identification of a novel fosfomycin resistance gene (fosA2) in Enterobacter cloacae from the Salmon River, Canada. Lett Appl Microbiol 2011; 52:427–429 [View Article][PubMed]
    [Google Scholar]
  8. Wachino J, Yamane K, Suzuki S, Kimura K, Arakawa Y. Prevalence of fosfomycin resistance among CTX-M-producing Escherichia coli clinical isolates in Japan and identification of novel plasmid-mediated fosfomycin-modifying enzymes. Antimicrob Agents Chemother 2010; 54:3061–3064 [View Article][PubMed]
    [Google Scholar]
  9. Nakamura G, Wachino J, Sato N, Kimura K, Yamada K et al. Practical agar-based disk potentiation test for detection of fosfomycin-nonsusceptible Escherichia coli clinical isolates producing glutathione S-transferases. J Clin Microbiol 2014; 52:3175–3179 [View Article][PubMed]
    [Google Scholar]
  10. Wareham D, Sab Z, Phee LM, Mhf AM et al. Co-carriage of plasmid-mediated fosfomycin resistance determinants (fos) by carbapenem resistant Enterobacteriaceae in the United Kingdom. Asm Microbe 2016
    [Google Scholar]
  11. Patel JB, Cockerill Iii FR, Alder J. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement Clinical and Laboratory Standards Institute antimicrobial susceptibility testing M100-S24 vol. 34 2014 pp. 1–230
    [Google Scholar]
  12. Hou J, Huang X, Deng Y, He L, Yang T et al. Dissemination of the fosfomycin resistance gene fosA3 with CTX-M β-lactamase genes and rmtB carried on IncFII plasmids among Escherichia coli isolates from pets in China. Antimicrob Agents Chemother 2012; 56:2135–2138 [View Article][PubMed]
    [Google Scholar]
  13. Ma Y, Xu X, Guo Q, Wang P, Wang W et al. Characterization of fosA5, a new plasmid-mediated fosfomycin resistance gene in Escherichia coli. Lett Appl Microbiol 2015; 60:259–264 [View Article][PubMed]
    [Google Scholar]
  14. García P, Arca P, Toyos JR, Suárez JE. Detection of fosfomycin resistance by the polymerase chain reaction and Western blotting. J Antimicrob Chemother 1994; 34:955–963 [View Article][PubMed]
    [Google Scholar]
  15. Zilhao R, Courvalin P. Nucleotide sequence of the fosB gene conferring fosfomycin resistance in Staphylococcus epidermidis. FEMS Microbiol Lett 1990; 56:267[PubMed]
    [Google Scholar]
  16. Zilberberg MD, Shorr AF. Prevalence of multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacteriaceae among specimens from hospitalized patients with pneumonia and bloodstream infections in the United States from 2000 to 2009. J Hosp Med 2013; 8:559–563 [View Article][PubMed]
    [Google Scholar]
  17. Kazi M, Drego L, Nikam C, Ajbani K, Soman R et al. Molecular characterization of carbapenem-resistant Enterobacteriaceae at a tertiary care laboratory in Mumbai. Eur J Clin Microbiol Infect Dis 2015; 34:467–472 [View Article][PubMed]
    [Google Scholar]
  18. Okoche D, Asiimwe BB, Katabazi FA, Kato L, Najjuka CF et al. Prevalence and characterization of carbapenem-resistant Enterobacteriaceae isolated from Mulago National Referral Hospital, Uganda. PLoS One 2015; 10:e0135745 [View Article][PubMed]
    [Google Scholar]
  19. Drew RJ, Turton JF, Hill RL, Livermore DM, Woodford N et al. Emergence of carbapenem-resistant Enterobacteriaceae in a UK paediatric hospital. J Hosp Infect 2013; 84:300–304 [View Article][PubMed]
    [Google Scholar]
  20. Garau M, Latorre A, Alonso-Sanz M. Fosfomycin: an underrated antibiotic for urinary tract infections due to Escherichia coli. Enferm Infecc Microbiol Clin 2001; 19:462–466[PubMed] [CrossRef]
    [Google Scholar]
  21. Seo MR, Kim SJ, Kim Y, Kim J, Choi TY et al. Susceptibility of Escherichia coli from community-acquired urinary tract infection to fosfomycin, nitrofurantoin, and temocillin in Korea. J Korean Med Sci 2014; 29:1178–1181 [View Article][PubMed]
    [Google Scholar]
  22. Nabeth P, Perrier-Gros-Claude JD, Juergens-Behr A, Dromigny JA. In vitro susceptibility of quinolone-resistant Enterobacteriaceae uropathogens to fosfomycin trometamol, in Dakar, Senegal. Scand J Infect Dis 2005; 37:497–499 [View Article][PubMed]
    [Google Scholar]
  23. Al-Zarouni M, Senok A, Al-Zarooni N, Al-Nassay F, Panigrahi D. Extended-spectrum β-lactamase-producing Enterobacteriaceae: in vitro susceptibility to fosfomycin, nitrofurantoin and tigecycline. Med Princ Pract 2012; 21:543–547 [View Article][PubMed]
    [Google Scholar]
  24. Takahata S, Ida T, Hiraishi T, Sakakibara S, Maebashi K et al. Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents 2010; 35:333–337 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000578
Loading
/content/journal/jmm/10.1099/jmm.0.000578
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error