1887

Abstract

A prevailing opinion is that the strains of Pseudomonas aeruginosa that infects both plants and humans are two separate species. This study strongly disputes that notion until the modern molecular technology proves otherwise. This paper examines a spectrum of strains occurring in nature, their habitats, dissemination, their relationship to clinical strains, and the environmental conditions that favor their colonization of plants. The isolates were obtained from clinical specimens, plants, soil, and water. The identity of these strains was confirmed using pyocin typing and biochemical assays. The data reveal that agricultural soils, potted ornamental plants, hoses, fountains, and faucets frequently harbored P. aeruginosa. However, it was not commonly found in semi-arid areas, suggesting that moisture and high humidity is necessary for colonization and survival. Though found in soil, P. aeruginosa was seldom isolated on edible plant parts. The pathogenicity of various strains on plants was tested by inoculating vegetables, lettuce slices (Lactuca sativa L. "Great Lakes"), celery stalks (Apium graveolens L. var. Dulce], potato tuber slices (Solanum tuberosum L. "Whiterose"), tomato (Lycopersicon esculentum L. Mill), cucumber (Cucumis sativus L.), rutabaga (Brassica campestris L.), and carrot (Daucus carota L. var sativa). There was considerable variation in the strains' ability to cause rot, but no difference was observed between clinical isolates and others from agricultural fields, water, and soil. Two of the clinical isolates from burn patients, P. aeruginosa PA13 and PA14, exhibited the greatest virulence in causing rot in all the plants that were tested, especially on cucumber, lettuce, potato, and tomato. The study discusses how closely the epidemiology of P. aeruginosa relates to many plant pathogens, and the ability of human isolates to colonize plants and food material under favorable conditions. The biochemical and phenotypic similarity among strains from the clinical and agricultural material is strongly indicative that they are the same species and that plants and soil are natural reservoirs for P. aeruginosa.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000758
2018-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/8/1191.html?itemId=/content/journal/jmm/10.1099/jmm.0.000758&mimeType=html&fmt=ahah

References

  1. Azuma Y, Witter LD. Pyocyanin formation by some normally apyocyanogenic strains of Pseudomonas aeruginosa. J Bacteriol 1964; 87:1254[PubMed]
    [Google Scholar]
  2. Ballard RW, Palleroni NJ, Doudoroff M, Stanier RY, Mandel M. Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola and P. caryophylli. J Gen Microbiol 1970; 60:199–214 [View Article][PubMed]
    [Google Scholar]
  3. Barnes EH. Bacteria on leaf surfaces and in intercellular leaf spaces. Science 1965; 147:1151–1152 [View Article][PubMed]
    [Google Scholar]
  4. Bassett DJ. Causes and prevention of sepsis due to Gram-negative bacteria. Common-source outbreaks. Proc R Soc Med 1971; 64:980–986[PubMed]
    [Google Scholar]
  5. Benham RW, Kesten B. Sporotrichosis: Its transmission to plants and animals. J Infect Dis 1932; 50:437–458 [View Article]
    [Google Scholar]
  6. Bobo RA, Newton EJ, Jones LF, Farmer LH, Farmer JJ. Nursery outbreak of Pseudomonas aeruginosa: epidemiological conclusions from five different typing methods. Appl Microbiol 1973; 25:414–420[PubMed]
    [Google Scholar]
  7. Brodsky MH, Nixon MC. Rapid method for detection of Pseudomonas aeruginosa on MacConkey agar under ultraviolet light. Appl Microbiol 1973; 26:219–220[PubMed]
    [Google Scholar]
  8. Brown C, Seidler RJ. Potential pathogens in the environment: Klebsiella pneumoniae, a taxonomic and ecological enigma. Appl Microbiol 1973; 25:900–904[PubMed]
    [Google Scholar]
  9. Brown MR, Foster JH. A simple diagnostic milk medium for Pseudomonas aeruginosa. J Clin Pathol 1970; 23:172–177 [View Article][PubMed]
    [Google Scholar]
  10. Brown VI, Lowbury EJ. Use of an improved cetrimide agar medium and other culture methods for Pseudomonas aeruginosa. J Clin Pathol 1965; 18:752–756 [View Article][PubMed]
    [Google Scholar]
  11. Buhlmann X, Vischer WA, Bruhin H. Identification of apyocyanogenic strains of Pseudomonas aeruginosa. J Bacteriol 1961; 82:787–788[PubMed]
    [Google Scholar]
  12. Cartwright RY, Hargrave PR. Pseudomonas in ventilators. Lancet 1970; 1:40 [View Article][PubMed]
    [Google Scholar]
  13. Cho JJ, Schroth MN, Kominos SD, Green SK. Ornamental plants as carriers of Pseudomonas aeruginosa. Phytopathology 1975; 65:425–431 [View Article]
    [Google Scholar]
  14. Ciferri R, Baldacci E. Intorno alla pathogenicity di alcuni miceti dell’uomo per il frutto del pomodoro. Boll Soc Ital Biol Sper 1934; 9:200–202
    [Google Scholar]
  15. Clara F. A new bacterial leaf disease of tobacco in the Philippines. Phytopathology 1930; 20:691–706
    [Google Scholar]
  16. Coles HW. The digestion of pectin and methylated glucoses by various organisms. Plant Physiol 1926; 1:379–385 [View Article][PubMed]
    [Google Scholar]
  17. Cooke EM, Shooter RA, O'Farrell SM, Martin DR. Faecal carriage of Pseudomonas aeruginosa by newborn babies. Lancet 1970; 2:1045–1046 [View Article][PubMed]
    [Google Scholar]
  18. Csiszár K, Lányi B. Pyocine typing of Pseudomonas aeruginosa: association between antigenic structure and pyocine type. Acta Microbiol Acad Sci Hung 1970; 17:361–370[PubMed]
    [Google Scholar]
  19. Darrell JH, Wahba AH. Pyocine-typing of hospital strains of Pseudomonas pyocyanea. J Clin Pathol 1964; 17:236–242 [View Article][PubMed]
    [Google Scholar]
  20. Deighton MA, Tagg JR, Mushin R. Epidemiology of Pseudomonas aeruginosa infection in hospitals. 2. "Fingerprinting" of Ps. aeruginosa strains in a study of cross-infection in a children's hospital. Med J Aust 1971; 1:892–896[PubMed]
    [Google Scholar]
  21. Desai S. Stinking rot of sugar cane. Indian J Agr Sci 1935; 5:387–392
    [Google Scholar]
  22. Duncan DW, Razzell WE. Klebsiella biotypes among coliforms isolated from forest environments and farm produce. Appl Microbiol 1972; 24:933–938[PubMed]
    [Google Scholar]
  23. Ederer GM, Matsen JM. Colonization and infection with Pseudomonas cepacia. J Infect Dis 1972; 125:613–618 [View Article][PubMed]
    [Google Scholar]
  24. Edmonds P, Suskind RR, Macmillan BG, Holder IA. Epidemiology of Pseudomonas aeruginosa in a burn hospital: evaluation of serological, bacteriophage, and pyocin typing methods. Appl Microbiol 1972; 24:213–218[PubMed]
    [Google Scholar]
  25. Edmonds P, Suskind RR, Macmillan BG, Holder IA. Epidemiology of Pseudomonas aeruginosa in a burns hospital: surveillance by a combined typing system. Appl Microbiol 1972; 24:219–225[PubMed]
    [Google Scholar]
  26. Elrod RP, Braun AC. Pseudomonas aeruginosa: Its role as a plant pathogen. J Bacteriol 1942; 44:633–645[PubMed]
    [Google Scholar]
  27. Farmer JJ, Herman LG. Epidemiological fingerprinting of Pseudomonas aeruginosa by the production of and sensitivity of pyocin and bacteriophage. Appl Microbiol 1969; 18:760–765[PubMed]
    [Google Scholar]
  28. Fierer J, Taylor PM, Gezon HM. Pseudomonas aeruginosa epidemic traced to delivery-room resuscitators. N Engl J Med 1967; 276:991–996 [View Article][PubMed]
    [Google Scholar]
  29. Gaby WL, Free E. Differential diagnosis of Pseudomonas-like microorganisms in the clinical laboratory. J Bacteriol 1958; 76:442–444[PubMed]
    [Google Scholar]
  30. Geldreich EE, Kenner BA, Kabler PW. Occurrence of coliforms, fecal coliforms, and Streptococci on vegetation and insects. Appl Microbiol 1964; 12:63–69[PubMed]
    [Google Scholar]
  31. Gilardi GL. Diagnostic criteria for differentiation of pseudomonads pathogenic for man. Appl Microbiol 1968; 16:1497–1502[PubMed]
    [Google Scholar]
  32. Gilardi GL. Characterization of Pseudomonas species isolated from clinical specimens. Appl Microbiol 1971; 21:414–419[PubMed]
    [Google Scholar]
  33. Gillies RR, Govan JR. Typing of Pseudomonas pyocyanea by pyocine production. J Pathol Bacteriol 1966; 91:339–345 [View Article][PubMed]
    [Google Scholar]
  34. Govan JR, Gillies RR. Further studies in the pyocine typing of Pseudomonas pyocyanea. J Med Microbiol 1969; 2:17–25 [View Article][PubMed]
    [Google Scholar]
  35. Green SK, Schroth MN, Cho JJ, Kominos SK, Vitanza-Jack VB. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl Microbiol 1974; 28:987–991[PubMed]
    [Google Scholar]
  36. Haynes WC. Pseudomonas aeruginosa–its characterization and identification. J Gen Microbiol 1951; 5:939–950 [View Article][PubMed]
    [Google Scholar]
  37. Hedberg M. Acetamide agar medium selective for Pseudomonas aeruginosa. Appl Microbiol 1969; 17:481[PubMed]
    [Google Scholar]
  38. Hildebrand DC. Pectate and pectin gels for differentiation of Pseudomonas sp. and other bacterial plant pathogens. Pyotopathology 1971; 61:1430–1436 [View Article]
    [Google Scholar]
  39. Holloway BW. Grouping Pseudomonas aeruginosa by lysogenicity and pyocinogenicity. J Pathol Bacteriol 1960; 80:448–450 [View Article][PubMed]
    [Google Scholar]
  40. Jacob F. Biosynthèse induite et mode d'action d'une pyocine, antibiotique de Pseudomonas pyocyanea. Ann Inst Pasteur 1954; 86:149–160
    [Google Scholar]
  41. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307[PubMed]
    [Google Scholar]
  42. Knowles R, Neufeld R, Simpson S. Acetylene reduction (nitrogen fixation) by pulp and paper mill effluents and by Klebsiella isolated from effluents and environmental situations. Appl Microbiol 1974; 28:608–613[PubMed]
    [Google Scholar]
  43. Kominos SD, Copeland CE, Grosiak B. Mode of transmission of Pseudomonas aeruginosa in a burn unit and an intensive care unit in a general hospital. Appl Microbiol 1972; 23:309–312[PubMed]
    [Google Scholar]
  44. Kominos SD, Copeland CE, Grosiak B, Postic B. Introduction of Pseudomonas aeruginosa into a hospital via vegetables. Appl Microbiol 1972; 24:567–570[PubMed]
    [Google Scholar]
  45. Kubica GP, Dye WE. (1967); Laboratory methods for clinical and public health: mycobacteriology. U.S. Bureau of Disease Prevention and Environmental Control, National Communicable Disease Center.
  46. Lambe DW, Stewart P. Evaluation of Pseudosel agar as an aid in the identification of Pseudomonas aeruginosa. Appl Microbiol 1972; 23:377–381[PubMed]
    [Google Scholar]
  47. Lányi B. Serological properties of Pseudomonas aeruginosa. II. Type-specific thermolabile (flagellar) antigens. Acta Microbiol Acad Sci Hung 1970; 17:35–48[PubMed]
    [Google Scholar]
  48. Leben C. Survival of plant pathogenic bacteria. Ohoio Agr Res Dev Ctr 1974; 100:1–21
    [Google Scholar]
  49. Line MA, Loutit MW. Non-symbiotic nitrogen-fixing organisms from some New Zealand Tussock-grassland soils. J Gen Microbiol 1971; 66:309–318 [View Article]
    [Google Scholar]
  50. Lowbury EJ. Improved culture methods for the detection of Ps. pyocyanea. J Clin Pathol 1951; 4:66–72 [View Article][PubMed]
    [Google Scholar]
  51. Lowbury EJ, Collins AG. The use of a new cetrimide product in a selective medium for Pseudomonas pyocyanea. J Clin Pathol 1955; 8:47–48 [View Article][PubMed]
    [Google Scholar]
  52. Lowbury EJ, Thom BT, Lilly HA, Babb JR, Whittall K. Sources of infection with Pseudomonas aeruginosa in patients with tracheostomy. J Med Microbiol 1970; 3:39–56 [View Article][PubMed]
    [Google Scholar]
  53. MacPherson JN, Gillies RR. A note on bacteriocine typing techniques. J Med Microbiol 1969; 2:161–165 [View Article][PubMed]
    [Google Scholar]
  54. Matsen JM, Spindler JA, Blosser RO. Characterization of Klebsiella isolates from natural receiving waters and comparison with human isolates. Appl Microbiol 1974; 28:672–678[PubMed]
    [Google Scholar]
  55. Matsumoto H, Tazaki T, Kato T. Serological and pyocine types of Pseudomonas aeruginosa from various sources. Jpn J Microbiol 1968; 12:111–119 [View Article][PubMed]
    [Google Scholar]
  56. McCoy RH, Seidler RJ. Potential pathogens in the environment: isolation, enumeration, and identification of seven genera of intestinal bacteria associated with small green pet turtles. Appl Microbiol 1973; 25:534–538[PubMed]
    [Google Scholar]
  57. Merrikin DJ, Terry CS. Variability of pyocine type and pyocine sensitivity in some strains of Pseudomonas aeruginosa. J Appl Bacteriol 1972; 35:667–672 [View Article][PubMed]
    [Google Scholar]
  58. National Communicable Disease Center (1967) Laboratory methods in special bacteriology, Course 8390-C, NCDC, Atlanta, Ga.
  59. Neussel H. Die bedeutung der pyocin-typisierung bei kontrolled des verlaufes von harnweginfektionen mit Pseudomonas aeruginosa [Role of pyocine typing in the control of Pseudomonas aeruginosa urinary tract infections]. Arzneimittelforschung 1971; 21:333–335
    [Google Scholar]
  60. Nunez WJ, Colmer AR. Differentiation of Aerobacter-Klebsiella isolated from sugarcane. Appl Microbiol 1968; 16:1875–1878[PubMed]
    [Google Scholar]
  61. Osman MA. Pyocine typing of Pseudomonas aeruginosa. J Clin Pathol 1965; 18:200–202 [View Article][PubMed]
    [Google Scholar]
  62. Paine SG, Branfoot JM. Studies in bacteriosis XI. A Bacterial disease of lettuce. Ann Appl Biol 1924; 11:312–317 [View Article]
    [Google Scholar]
  63. Pease M, Malcolm J, Chernaik R, Dunlop S. An approach to the problem of differentiating pseudomonads in the clinical laboratory. Am J Med Technol 1968; 34:35–40[PubMed]
    [Google Scholar]
  64. Phillips I, Spencer G. Pseudomonas aeruginosa cross-infection due to contaminated respiratory apparatus. Lancet 1965; 2:1325–1327[PubMed]
    [Google Scholar]
  65. Prunier J, Kaiser P. Study on the pectinolytic activity in phytopathogenic and saprophytic bacteria of plants. I. Research on pectinolytic enzymes. Ann Epiphyt 1964; 15:205–219
    [Google Scholar]
  66. Rees TA. Bacteria in suction machines. Lancet 1970; 1:240 [View Article][PubMed]
    [Google Scholar]
  67. Samish Z, Etinger-Tulczynska R. Distribution of bacteria within the tissue of healthy tomatoes. Appl Microbiol 1963; 11:7–10[PubMed]
    [Google Scholar]
  68. Shooter RA et al. Food and medicaments as possible sources of hospital strains of Pseudomonas aeruginosa. Lancet 1969; 1:1227–1229 [View Article][PubMed]
    [Google Scholar]
  69. Shooter RA, Cooke EM, Faiers MC, Breaden AL, O'Farrell SM. Isolation of Escherichia coli, Pseudomonas aeruginosa, and Klebsiella from food in hospitals, canteens, and schools. Lancet 1971; 2:390–392 [View Article][PubMed]
    [Google Scholar]
  70. Smith RF, Dayton SL. Use of acetamide broth in the isolation of Pseudomonas aeruginosa from rectal swabs. Appl Microbiol 1972; 24:143–145[PubMed]
    [Google Scholar]
  71. Snell JJS, Hill LR, Lapage SP, Curtis MA. Identification of Pseudomonas cepacia Burkholder and its synonymy with Pseudomonas kingii Jonsson. Int J Syst Bacteriol 1972; 22:127–138 [View Article]
    [Google Scholar]
  72. Solari AA et al. Use of a selective enrichment medium for the isolation of Pseudomonas aeruginosa from feces. J Bacteriol 1962; 84:190[PubMed]
    [Google Scholar]
  73. Stanghellini ME. Bacterial Seed-piece decay & blackleg of potato. Progressive Agriculture in Arizona 1972
    [Google Scholar]
  74. Stanier RY, Palleroni NJ, Doudoroff M. The aerobic Pseudomonads a taxonomic study. J Gen Microbiol 1966; 43:159–271 [View Article][PubMed]
    [Google Scholar]
  75. Starr MP, Chatterjee AK. The genus Erwinia: enterobacteria pathogenic to plants and animals. Annu Rev Microbiol 1972; 26:389–426 [View Article][PubMed]
    [Google Scholar]
  76. Steinhaus E. (1949) Principles of Insect Pathology McGraw-Hill Book; New York:
    [Google Scholar]
  77. Sutter VL. Identification of Pseudomonas species isolated from hospital environment and human sources. Appl Microbiol 1968; 16:1532–1538[PubMed]
    [Google Scholar]
  78. Thom AR, Stephens ME, Gillespie WA, Alder VG. Nitrofurantoin media for the isolation of Pseudomonas aeruginosa. J Appl Bacteriol 1971; 34:611–614 [View Article][PubMed]
    [Google Scholar]
  79. Wahba AH. Hospital Infection with Pseudomonas pyocyanea: An investigation by a combined pyocine and serological typing method. Br Med J 1965; 1:86–89 [View Article][PubMed]
    [Google Scholar]
  80. Wahba AH, Darrell JH. The identification OF atypical strains of Pseudomonas aeruginosa. J Gen Microbiol 1965; 38:329–342 [View Article][PubMed]
    [Google Scholar]
  81. Whitby JL, Rampling A. Pseudomonas aeruginosa contamination in domestic and hospital environments. Lancet 1972; 1:15–17 [View Article][PubMed]
    [Google Scholar]
  82. Zabransky RJ, Day FE. Pyocine typing of clinical strains of Pseudomonas aeruginosa. Appl Microbiol 1969; 17:293–296[PubMed]
    [Google Scholar]
  83. Ziv G, Mushin R, Tagg JR. Pyocine typing as an epidemiological marker in Pseudomonas aeruginosa mastitis in cattle. J Hyg 1971; 69:171–177 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000758
Loading
/content/journal/jmm/10.1099/jmm.0.000758
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error