1887

Abstract

Purpose. Pseudomonas aeruginosa expresses a type III secretion system (T3SS) that activates the host inflammasome-mediated immune response. We examined the role of inflammasome activation in severe infection outcomes.

Methods. We infected C57BL/6 (B6) mice lacking inflammasome components ASC or caspase-1/11 with a highly virulent strain of P. aeruginosa, PSE9, using a mouse model of pneumonia. We evaluated inflammasome activation in vitro by infecting bone marrow-derived macrophages (BMDMs) with PSE9 and measuring cell death and release of inflammasome-dependent cytokines IL-18 and IL-1β. A bioluminescent reporter assay was used to detect activity of caspase-1 and caspase-3/7 in BMDMs from B6 and ASC-deficient mice.

Results/Key Findings. ASC mice exhibited significantly improved survival relative to caspase-1/11 mice and B6 mice, demonstrating that ASC and caspase-1/11 play differential roles in P. aeruginosa infection. We found that ASC BMDMs exhibited significantly reduced cell death relative to B6 BMDMs, while caspase-1/11 BMDMs were resistant to cell death. IL-18 and IL-1β were both detected from supernatants of infected B6 BMDMs, but cytokine release was abrogated in both ASC and caspase-1/11 BMDMs. We detected a 2.5-fold increase in the activation of caspase-3/7 in PSE9-infected B6 BMDMs, but no increase in infected ASC BMDMs. Cell death, cytokine release and caspase-3/7 activity were dependent on a functional T3SS.

Conclusions. Collectively, these results are consistent with a model whereby the T3SS apparatus of P. aeruginosa activates the caspase-1-dependent inflammasome and caspase-3/7 through an ASC-dependent mechanism. This activation may have implications for the outcomes of P. aeruginosa infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000782
2018-06-29
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/8/1168.html?itemId=/content/journal/jmm/10.1099/jmm.0.000782&mimeType=html&fmt=ahah

References

  1. Lamkanfi M. Emerging inflammasome effector mechanisms. Nat Rev Immunol 2011; 11:213–220 [View Article][PubMed]
    [Google Scholar]
  2. vande Walle L, Lamkanfi M. Inflammasomes: caspase-1-activating platforms with critical roles in host defense. Front Microbiol 2011; 2:3 [View Article][PubMed]
    [Google Scholar]
  3. Broz P, von Moltke J, Jones JW, Vance RE, Monack DM. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 2010; 8:471–483 [View Article][PubMed]
    [Google Scholar]
  4. Sahoo M, Ceballos-Olvera I, del Barrio L, Re F. Role of the inflammasome, IL-1β, and IL-18 in bacterial infections. ScientificWorldJournal 2011; 11:2037–2050 [View Article][PubMed]
    [Google Scholar]
  5. Lee JK, Kim SH, Lewis EC, Azam T, Reznikov LL et al. Differences in signaling pathways by IL-1β and IL-18. Proc Natl Acad Sci USA 2004; 101:8815–8820 [View Article][PubMed]
    [Google Scholar]
  6. Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 2009; 7:654–665 [View Article][PubMed]
    [Google Scholar]
  7. Feltman H, Schulert G, Khan S, Jain M, Peterson L et al. Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 2001; 147:2659–2669 [View Article][PubMed]
    [Google Scholar]
  8. Kofoed EM, Vance RE. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 2011; 477:592–595 [View Article][PubMed]
    [Google Scholar]
  9. Zhao Y, Yang J, Shi J, Gong YN, Lu Q et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 2011; 477:596–600 [View Article][PubMed]
    [Google Scholar]
  10. Yang J, Zhao Y, Shi J, Shao F. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. Proc Natl Acad Sci USA 2013; 110:14408–14413 [View Article][PubMed]
    [Google Scholar]
  11. Kofoed EM, Vance RE. NAIPs: building an innate immune barrier against bacterial pathogens. NAIPs function as sensors that initiate innate immunity by detection of bacterial proteins in the host cell cytosol. Bioessays 2012; 34:589–598 [View Article][PubMed]
    [Google Scholar]
  12. Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI et al. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 2007; 204:3235–3245 [View Article][PubMed]
    [Google Scholar]
  13. Galle M, Schotte P, Haegman M, Wullaert A, Yang HJ et al. The Pseudomonas aeruginosa Type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1β maturation. J Cell Mol Med 2008; 12:1767–1776 [View Article][PubMed]
    [Google Scholar]
  14. Bergsbaken T, Fink SL, den Hartigh AB, Loomis WP, Cookson BT. Coordinated host responses during pyroptosis: caspase-1-dependent lysosome exocytosis and inflammatory cytokine maturation. J Immunol 2011; 187:2748–2754 [View Article][PubMed]
    [Google Scholar]
  15. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 2010; 11:1136–1142 [View Article][PubMed]
    [Google Scholar]
  16. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005; 73:1907–1916 [View Article][PubMed]
    [Google Scholar]
  17. Cohen TS, Prince AS. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia. J Clin Invest 2013; 123:1630–1637 [View Article][PubMed]
    [Google Scholar]
  18. Thakur A, Barrett RP, McClellan S, Hazlett LD. Regulation of Pseudomonas aeruginosa corneal infection in IL-1 beta converting enzyme (ICE, caspase-1) deficient mice. Curr Eye Res 2004; 29:225–233 [View Article][PubMed]
    [Google Scholar]
  19. Schultz MJ, Rijneveld AW, Florquin S, Edwards CK, Dinarello CA et al. Role of interleukin-1 in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol 2002; 282:L285–L290 [View Article][PubMed]
    [Google Scholar]
  20. Thakur A, Barrett RP, Hobden JA, Hazlett LD. Caspase-1 inhibitor reduces severity of pseudomonas aeruginosa keratitis in mice. Invest Ophthalmol Vis Sci 2004; 45:3177–3184 [View Article][PubMed]
    [Google Scholar]
  21. Schultz MJ, Knapp S, Florquin S, Pater J, Takeda K et al. Interleukin-18 impairs the pulmonary host response to Pseudomonas aeruginosa. Infect Immun 2003; 71:1630–1634 [View Article][PubMed]
    [Google Scholar]
  22. Karmakar M, Sun Y, Hise AG, Rietsch A, Pearlman E. Cutting edge: IL-1β processing during Pseudomonas aeruginosa infection is mediated by neutrophil serine proteases and is independent of NLRC4 and caspase-1. J Immunol 2012; 189:4231–4235 [View Article][PubMed]
    [Google Scholar]
  23. Patankar YR, Mabaera R, Berwin B. Differential ASC requirements reveal a key role for neutrophils and a noncanonical IL-1β response to Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2015; 309:L902–913 [View Article][PubMed]
    [Google Scholar]
  24. Schulert GS, Feltman H, Rabin SD, Martin CG, Battle SE et al. Secretion of the toxin ExoU is a marker for highly virulent Pseudomonas aeruginosa isolates obtained from patients with hospital-acquired pneumonia. J Infect Dis 2003; 188:1695–1706 [View Article][PubMed]
    [Google Scholar]
  25. Nicas TI, Iglewski BH. Isolation and characterization of transposon-induced mutants of Pseudomonas aeruginosa deficient in production of exoenzyme S. Infect Immun 1984; 45:470–474[PubMed]
    [Google Scholar]
  26. Hauser AR, Cobb E, Bodi M, Mariscal D, Vallés J et al. Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit Care Med 2002; 30:521–528 [View Article][PubMed]
    [Google Scholar]
  27. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 1998; 212:77–86 [View Article][PubMed]
    [Google Scholar]
  28. Shaver CM, Hauser AR. Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 2004; 72:6969–6977 [View Article][PubMed]
    [Google Scholar]
  29. Franchi L, Stoolman J, Kanneganti TD, Verma A, Ramphal R et al. Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 2007; 37:3030–3039 [View Article][PubMed]
    [Google Scholar]
  30. Kayagaki N, Warming S, Lamkanfi M, vande Walle L, Louie S et al. Non-canonical inflammasome activation targets caspase-11. Nature 2011; 479:117–121 [View Article][PubMed]
    [Google Scholar]
  31. Wangdi T, Mijares LA, Kazmierczak BI. In vivo discrimination of type 3 secretion system-positive and -negative Pseudomonas aeruginosa via a caspase-1-dependent pathway. Infect Immun 2010; 78:4744–4753 [View Article][PubMed]
    [Google Scholar]
  32. Blander JM. A long-awaited merger of the pathways mediating host defence and programmed cell death. Nat Rev Immunol 2014; 14:601–618 [View Article][PubMed]
    [Google Scholar]
  33. Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 2012; 150:606–619 [View Article][PubMed]
    [Google Scholar]
  34. Chung H, Vilaysane A, Lau A, Stahl M, Morampudi V et al. NLRP3 regulates a non-canonical platform for caspase-8 activation during epithelial cell apoptosis. Cell Death Differ 2016; 23:1331–1346 [View Article][PubMed]
    [Google Scholar]
  35. Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 2010; 107:3076–3080 [View Article][PubMed]
    [Google Scholar]
  36. Miao EA, Ernst RK, Dors M, Mao DP, Aderem A. Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Natl Acad Sci USA 2008; 105:2562–2567 [View Article][PubMed]
    [Google Scholar]
  37. Lee MS, Kwon H, Lee EY, Kim DJ, Park JH et al. Shiga toxins activate the NLRP3 inflammasome pathway to promote both production of the proinflammatory cytokine interleukin-1β and apoptotic cell death. Infect Immun 2015; 84:172–186 [View Article][PubMed]
    [Google Scholar]
  38. Kaufman MR, Jia J, Zeng L, Ha U, Chow M et al. Pseudomonas aeruginosa mediated apoptosis requires the ADP-ribosylating activity of exoS. Microbiology 2000; 146:2531–2541 [View Article][PubMed]
    [Google Scholar]
  39. Anantharajah A, Buyck JM, Faure E, Glupczynski Y, Rodriguez-Villalobos H et al. Correlation between cytotoxicity induced by Pseudomonas aeruginosa clinical isolates from acute infections and IL-1β secretion in a model of human THP-1 monocytes. Pathog Dis 2015; 73:ftv049 [View Article][PubMed]
    [Google Scholar]
  40. Fan LC, Lin JL, Yang JW, Mao B, Lu HW et al. Macrolides protect against Pseudomonas aeruginosa infection via inhibition of inflammasomes. Am J Physiol Lung Cell Mol Physiol 2017; 313:L677–L686 [View Article][PubMed]
    [Google Scholar]
  41. Bowlin NO, Williams JD, Knoten CA, Torhan MC, Tashjian TF et al. Mutations in the Pseudomonas aeruginosa needle protein gene pscF confer resistance to phenoxyacetamide inhibitors of the type III secretion system. Antimicrob Agents Chemother 2014; 58:2211–2220 [View Article][PubMed]
    [Google Scholar]
  42. Wang C, Liu X, Wang J, Zhou J, Cui Z et al. Design and characterization of a polyamine derivative inhibiting the expression of type III secretion system in Pseudomonas aeruginosa. Sci Rep 2016; 6:30949 [View Article][PubMed]
    [Google Scholar]
  43. Anantharajah A, Faure E, Buyck JM, Sundin C, Lindmark T et al. Inhibition of the injectisome and flagellar type III secretion systems by INP1855 Impairs Pseudomonas aeruginosa pathogenicity and inflammasome activation. J Infect Dis 2016; 214:1105–1116 [View Article][PubMed]
    [Google Scholar]
  44. Thanabalasuriar A, Surewaard BG, Willson ME, Neupane AS, Stover CK et al. Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature. J Clin Invest 2017; 127:2249–2261 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000782
Loading
/content/journal/jmm/10.1099/jmm.0.000782
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error