1887

Abstract

Dermatophytes are a highly specialized group of keratinophilic and keratinolytic filamentous fungi causing a ringworm disease called dermatophytosis or superficial mycoses. Although dermatophyte infections do not threaten the host’s life, they lower its quality in humans by causing discomfort related to cosmetic problems and through their epidemiological significance, whereas in farm animals they are responsible for economic losses and constitute a source of the spread of spores. Evidence from countless observational studies that have been conducted over the last 90 years indicates that dermatophytes infect humans of every age, race, gender and socioeconomic status with strikingly high rates, as well as both farmed and wild animals in various health conditions and with various epidemiological statuses. However, the prevalence of superficial fungal infections is highly variable, since it depends on several parameters associated with the infected individual and the dermatophyte, their mutual interactions, and epidemiological and geographical factors. The curious disparity in dermatophyte infection patterns has prompted many investigators to search for a link between the host, the host’s predispositions and susceptibility to the disease, and the dermatophyte species and virulence. Thus, the question arises as to whether, in addition to the generally recognized factors predisposing hosts to diseases, there are some other predispositions to dermatophyte infections in a species-specific host. In this review, we describe recent findings about the mechanism of dermatophyte infections, focusing on the adaptation of the fungi to the host and conditions predisposing each side to the disease.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000982
2019-05-03
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/68/6/823.html?itemId=/content/journal/jmm/10.1099/jmm.0.000982&mimeType=html&fmt=ahah

References

  1. Brito-Santos F, Figueiredo-Carvalho MHG, Coelho RA, Sales A, Almeida-Paes R. Tinea capitis by Microsporum audouinii: case reports and review of published global literature 2000–2016. Mycopathologia 2017; 182:1053–1060 [View Article]
    [Google Scholar]
  2. Gnat S, Łagowski D, Nowakiewicz A, Zięba P. Tinea corporis by Microsporum canis in mycological laboratory staff: unexpected results of epidemiological investigation. Mycoses 2018; 61:945–953 [View Article]
    [Google Scholar]
  3. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses 2008; 51:2–15 [View Article]
    [Google Scholar]
  4. Ahmadi B, Mirhendi H, Makimura K, de Hoog GS, Shidfar MR et al. Phylogenetic analysis of dermatophyte species using DNA sequence polymorphism in calmodulin gene. Med Mycol 2016; 54:500–514 [View Article]
    [Google Scholar]
  5. Mercantini R, Moretto D, Palamara G, Mercantini P, Marsella R. Epidemiology of dermatophytoses observed in Rome, Italy, between 1985 and 1993: Die Epidemiologie der Dermatophytosen in Rom, Italien, zwischen 1985 und 1993. Mycoses 1995; 38:415–419
    [Google Scholar]
  6. Ellabib MS, Khalifa Z, Kavanagh K. Dermatophytes and other fungi associated with skin mycoses in Tripoli, Libya. Mycoses 2002; 45:101–104 [View Article]
    [Google Scholar]
  7. Ozkutuk A, Ergon C, Yulug N. Species distribution and antifungal susceptibilities of dermatophytes during a one year period at a university hospital in Turkey. Mycoses 2007; 50:125–129 [View Article]
    [Google Scholar]
  8. Ziółkowska G, Nowakiewicz A, Gnat S, Trościańczyk A, Zięba P et al. Molecular identification and classification of Trichophyton mentagrophytes complex strains isolated from humans and selected animal species. Mycoses 2015; 58:119–126 [View Article]
    [Google Scholar]
  9. Abdel-Rahman SM. Genetic predictors of susceptibility to Dermatophytoses. Mycopathologia 2017; 182:67–76 [View Article]
    [Google Scholar]
  10. Gnat S, Nowakiewicz A, Łagowski D, Trościańczyk A, Zięba P. Multiple-strain Trichophyton mentagrophytes infection in a silver fox ( Vulpes vulpes ) from a breeding farm. Med Mycol 2019; 57:171–180 [View Article]
    [Google Scholar]
  11. Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev 1995; 8:240–259 [View Article]
    [Google Scholar]
  12. Czaika VA, Lam PA. Trichophyton mentagrophytes cause underestimated contagious zoophilic fungal infection. Mycoses 2013; 56:33–37 [View Article]
    [Google Scholar]
  13. Courtellemont L, Chevrier S, Degeilh B, Belaz S, Gangneux JP et al. Epidemiology of Trichophyton verrucosum infection in Rennes University Hospital, France: a 12-year retrospective study. Med Mycol 2017; 55:720–724
    [Google Scholar]
  14. Gnat S, Łagowski D, Nowakiewicz A, Trościańczyk A, Zięba P. Infection of Trichophyton verrucosum in cattle breeders, Poland: a 40-year retrospective study on the genomic variability of strains. Mycoses 2018; 61:681–690 [View Article]
    [Google Scholar]
  15. Brettmann EA, de Guzman Strong C. Recent evolution of the human skin barrier. Exp Dermatol 2018; 27:859–866 [View Article]
    [Google Scholar]
  16. Eckhart L, Zeeuwen PLJM. The skin barrier: epidermis vs environment. Exp Dermatol 2018; 27:805–806 [View Article]
    [Google Scholar]
  17. Seite S, Misery L. Skin sensitivity and skin microbiota: is there a link?. Exp Dermatol 2018; 27:1061–1064 [View Article]
    [Google Scholar]
  18. Dworecka-Kaszak B, Dąbrowska I. Dermatophytes: new taxonomy and differentiation methods. Review of current state of knowledge about mechanisms of pathogenesis and pathogen-host interaction. Med Weter 2017; 73:613–617 [View Article]
    [Google Scholar]
  19. Faway É, Lambert de Rouvroit C, Poumay Y. In vitro models of dermatophyte infection to investigate epidermal barrier alterations. Exp Dermatol 2018; 27:915–922 [View Article]
    [Google Scholar]
  20. Martinez-Rossi NM, Peres NTA, Rossi A. Pathogenesis of dermatophytosis: sensing the host tissue. Mycopathologia 2017; 182:215–227 [View Article]
    [Google Scholar]
  21. Peres NT, Sanches PR, Falcão JP, Silveira HC, Paião FG et al. Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum. BMC Microbiol 2010; 10:39 [View Article]
    [Google Scholar]
  22. Ogawa H, Summerbell RC, Clemons KV, Koga T, Ran YP et al. Dermatophytes and host defence in cutaneous mycoses. Med Mycol 1998; 36:166–173
    [Google Scholar]
  23. Martinez-Rossi NM, Persinoti GF, Peres NTA, Rossi A. Role of pH in the pathogenesis of dermatophytoses. Mycoses 2012; 55:381–387 [View Article]
    [Google Scholar]
  24. Elias PM. The how, why and clinical importance of stratum corneum acidification. Exp Dermatol 2017; 26:999–1003 [View Article]
    [Google Scholar]
  25. Mangoni ML, McDermott AM, Zasloff M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol 2016; 25:167–173 [View Article]
    [Google Scholar]
  26. Zurita J, Hay RJ. Adherence of dermatophyte microconidia and arthroconidia to human keratinocytes in vitro. J Invest Dermatol 1987; 89:529–534 [View Article]
    [Google Scholar]
  27. Duek L, Kaufman G, Ulman Y, Berdicevsky I. The pathogenesis of dermatophyte infections in human skin sections. J Infect 2004; 48:175–180 [View Article]
    [Google Scholar]
  28. Romani L. Immunity to fungal infections. Nat Rev Immunol 2011; 11:275–288 [View Article]
    [Google Scholar]
  29. Brock M. Fungal metabolism in host niches. Curr Opin Microbiol 2009; 12:371–376 [View Article]
    [Google Scholar]
  30. Heinen MP, Cambier L, Fievez L, Mignon B. Are Th17 cells playing a role in immunity to dermatophytosis?. Mycopathologia 2017; 182:251–261 [View Article]
    [Google Scholar]
  31. Gräser Y, Monod M, Bouchara JP, Dukik K, Nenoff P et al. New insights in dermatophyte research. Med Mycol 2018; 56:S2–S9 [View Article]
    [Google Scholar]
  32. Mills KJ, Robinson MK, Sherrill JD, Schnell DJ, Xu J. Analysis of gene expression profiles of multiple skin diseases identifies a conserved signature of disrupted homeostasis. Exp Dermatol 2018; 27:1000–1008 [View Article]
    [Google Scholar]
  33. Persinoti GF, Martinez DA, Li W, Döğen A, Billmyre RB et al. Whole-genome analysis illustrates global clonal population structure of the ubiquitous dermatophyte pathogen Trichophyton rubrum. Genetics 2018; 208:1657–1669 [View Article]
    [Google Scholar]
  34. Kunert J. Effect of reducing agents on proteolytic and keratinolytic activity of enzymes of Microsporum gypseum die Wirkung von Reduktionsmitteln auf die proteolytische und keratinolytische Aktivitat der enzyme von Microsporum gypseum. Mycoses 1992; 35:343–348
    [Google Scholar]
  35. Apodaca G, McKerrow JH. Regulation of Trichophyton rubrum proteolytic activity. Infect Immun 1989; 57:3081–3090
    [Google Scholar]
  36. Sharma A, Chandra S, Sharma M. Difference in keratinase activity of dermatophytes at different environmental conditions is an attribute of adaptation to parasitism. Mycoses 2012; 55:410–415 [View Article]
    [Google Scholar]
  37. Tsuboi R, Ko I, Takamori K, Ogawa H. Isolation of a keratinolytic proteinase from Trichophyton mentagrophytes with enzymatic activity at acidic pH. Infect Immun 1989; 57:3479–3483
    [Google Scholar]
  38. Gnat S, Łagowski D, Nowakiewicz A, Zięba P. The host range of dermatophytes, it is at all possible? Phenotypic evaluation of the keratinolytic activity of Trichophyton verrucosum clinical isolates. Mycoses 2019; 62:274–283
    [Google Scholar]
  39. Jacob TR, Peres NTA, Martins MP, Lang EAS, Sanches PR et al. Heat shock protein 90 (Hsp90) as a molecular target for the development of novel drugs against the dermatophyte Trichophyton rubrum. Front Microbiol 2015; 6:1241 [View Article]
    [Google Scholar]
  40. Silveira HCS, Gras DE, Cazzaniga RA, Sanches PR, Rossi A et al. Transcriptional profiling reveals genes in the human pathogen Trichophyton rubrum that are expressed in response to pH signaling. Microb Pathog 2010; 48:91–96 [View Article]
    [Google Scholar]
  41. Maranhão FCA, Paião FG, Martinez-Rossi NM. Isolation of transcripts over-expressed in human pathogen Trichophyton rubrum during growth in keratin. Microb Pathog 2007; 43:166–172 [View Article]
    [Google Scholar]
  42. Staib P, Zaugg C, Mignon B, Weber J, Grumbt M et al. Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiaein vitro versus during infection. Microbiology 2010; 156:884–895 [View Article]
    [Google Scholar]
  43. Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M et al. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 1995; 14:779–790 [View Article]
    [Google Scholar]
  44. Sharma M, Sharma M, Rao VM. In vitro biodegradation of keratin by dermatophytes and some soil keratinophiles. African J Biochem Res 2011; 5:1–6
    [Google Scholar]
  45. Ferreira-Nozawa MS, Silveira HCS, Ono CJ, Fachin AL, Rossi A et al. The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Med Mycol 2006; 44:641–645 [View Article]
    [Google Scholar]
  46. Peres NTdeA, Silva LGda, Santos RdaS, Jacob TR, Persinoti GF et al. In vitro and ex vivo infection models help assess the molecular aspects of the interaction of Trichophyton rubrum with the host milieu. Med Mycol 2016; 54:420–427 [View Article]
    [Google Scholar]
  47. Monod M. Secreted proteases from dermatophytes. Mycopathologia 2008; 166:285–294 [View Article]
    [Google Scholar]
  48. Brasch J, Zaldua M. Enzyme patterns of dermatophytes: Enzymmuster von Dermatophyten. Mycoses 1994; 37:11–16
    [Google Scholar]
  49. Cafarchia C, Iatta R, Latrofa MS, Gräser Y, Otranto D. Molecular epidemiology, phylogeny and evolution of dermatophytes. Infect Genet Evol 2013; 20:336–351 [View Article]
    [Google Scholar]
  50. Elavarashi E, Kindo AJ, Rangarajan S. Enzymatic and non-enzymatic virulence activities of dermatophytes on solid media. J Clin Diagn Res 2017; 11:DC23–DC25
    [Google Scholar]
  51. Gnat S, Łagowski D, Nowakiewicz A, Zięba P. Phenotypic characterization of enzymatic activity of clinical dermatophyte isolates from animals with and without skin lesions and humans. J Appl Microbiol 2018; 125:700–709 [View Article]
    [Google Scholar]
  52. Inada S, Watanabe K. Draft genome sequence of Meiothermus ruber H328, which degrades chicken feathers, and identification of proteases and peptidases responsible for degradation. Genome Announc 2013; 1:e00176–13 [View Article]
    [Google Scholar]
  53. Yamamura S, Morita Y, Hasan Q, Yokoyama K, Tamiya E. Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem Biophys Res Commun 2002; 294:1138–1143 [View Article]
    [Google Scholar]
  54. Huang Y, Busk PK, Herbst FA, Lange L. Genome and secretome analyses provide insights into keratin decomposition by novel proteases from the non-pathogenic fungus Onygena corvina. Appl Microbiol Biotechnol 2015; 99:9635–9649 [View Article]
    [Google Scholar]
  55. Lange L, Huang Y, Busk PK. Microbial decomposition of keratin in nature—a new hypothesis of industrial relevance. Appl Microbiol Biotechnol 2016; 100:2083–2096 [View Article]
    [Google Scholar]
  56. Robbins CR. Chemical and Physical Behavior of Human Hair - Clarence R. Robbins - Google Books, 3rd ed. New York, NY: Springer; 2002
    [Google Scholar]
  57. Yamada S, Wirtz D, Coulombe PA. Pairwise assembly determines the intrinsic potential for self-organization and mechanical properties of keratin filaments. Mol Biol Cell 2002; 13:382–391 [View Article]
    [Google Scholar]
  58. Meyers MA, Lin AYM, Chen PY, Muyco J. Mechanical strength of abalone nacre: role of the soft organic layer. J Mech Behav Biomed Mater 2008; 1:76–85 [View Article]
    [Google Scholar]
  59. Scott JA, Untereiner WA. Determination of keratin degradation by fungi using keratin azure. Med Mycol 2004; 42:239–246 [View Article]
    [Google Scholar]
  60. Ferreira-Nozawa MS, Nozawa SR, Martinez-Rossi NM, Rossi A. The dermatophyte Trichophyton rubrum secretes an EDTA-sensitive alkaline phosphatase on high-phosphate medium. Braz J Microbiol 2003; 34:161–164 [View Article]
    [Google Scholar]
  61. Maranhão FCA, Silveira HCS, Rossi A, Martinez-Rossi NM. Isolation of transcripts overexpressed in the human pathogen Trichophyton rubrum grown in lipid as carbon source. Can J Microbiol 2011; 57:333–338 [View Article]
    [Google Scholar]
  62. Nahas E, Rossi A. Properties of a repressible alkaline phosphatase secreted by the wild-type strain 74a of Neurospora crassa. Phytochemistry 1984; 23:507–510 [View Article]
    [Google Scholar]
  63. Martinez-Rossi NM, Peres NTA, Rossi A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia 2008; 166:369–383 [View Article]
    [Google Scholar]
  64. Peres NTdeA, Maranhão FCA, Rossi A, Martinez-Rossi NM. Dermatófitos: interação patógeno-hospedeiro E resistência a antifúngicos. An Bras Dermatol 2010; 85:657–667 [View Article]
    [Google Scholar]
  65. Garrido C, Gurbuxani S, Ravagnan L, Kroemer G. Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 2001; 286:433–442 [View Article]
    [Google Scholar]
  66. Didelot C, Schmitt E, Brunet M, Maingret L, Parcellier A et al. Heat shock proteins: endogenous modulators of apoptotic cell death. Handb Exp Pharmacol 2006; 172:171–198
    [Google Scholar]
  67. De Maio A. Extracellular heat shock proteins, cellular export vesicles, and the stress observation system: a form of communication during injury, infection, and cell damage: it is never known how far a controversial finding will go! dedicated to Ferruccio Ritossa. Cell Stress Chaperones 2011; 16:235–249
    [Google Scholar]
  68. Monahan IM, Betts J, Banerjee DK, Butcher PD. Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 2001; 147:459–471 [View Article]
    [Google Scholar]
  69. Ghosh A. Small heat shock proteins (HSP12, HSP20 and HSP30) play a role in Ustilago maydis pathogenesis. FEMS Microbiol Lett 2014; 361:17–24 [View Article]
    [Google Scholar]
  70. Baeza LC, Bailão AM, Borges CL, Pereira M, Soares CMdeA et al. cDNA representational difference analysis used in the identification of genes expressed by Trichophyton rubrum during contact with keratin. Microbes Infect 2007; 9:1415–1421 [View Article]
    [Google Scholar]
  71. Martinez-Rossi NM, Jacob TR, Sanches PR, Peres NTA, Lang EAS et al. Heat shock proteins in dermatophytes: current advances and perspectives. Curr Genomics 2016; 17:99–111 [View Article]
    [Google Scholar]
  72. Aljabre SHM, Richardson MD, Scott EM, Rashid A, Shankland GS. Adherence of arthroconidia and germlings of anthropophilic and zoophilic varieties of Trichophyton mentagrophytes to human corneocytes as an early event in the pathogenesis of dermatophytosis. Clin Exp Dermatol 1993; 18:231–235 [View Article]
    [Google Scholar]
  73. Woldeamanuel Y, Mengistu Y, Chryssanthou E, Petrini B. Dermatophytosis in Tulugudu Island, Ethiopia. Med Mycol 2005; 43:79–82 [View Article]
    [Google Scholar]
  74. Tsuboi R, Ogawa H, Bramono K, Richardson MD, Shankland GS et al. Pathogenesis of superficial mycoses. Med Mycol 1994; 32:91–104 [View Article]
    [Google Scholar]
  75. Rashid A, Scott E, Richardson MD. Early events in the invasion of the human nail plate by Trichophyton mentagrophytes. Br J Dermatol 1995; 133:932–940 [View Article]
    [Google Scholar]
  76. Ive FA. The carrier stage of Tineacapitis in Nigeria. Br J Dermatol 1966; 78:219–221 [View Article]
    [Google Scholar]
  77. Williams JV, Honig PJ, McGinley KJ, Leyden JJ. Semiquantitative study of tinea capitis and the asymptomatic carrier state in inner-city school children. Pediatrics 1995; 96:265–267
    [Google Scholar]
  78. Abdel-Rahman SM, Simon S, Wright KJ, Ndjountche L, Gaedigk A. Tracking Trichophyton tonsurans through a large urban child care center: defining infection prevalence and transmission patterns by molecular strain typing. Pediatrics 2006; 118:2365–2373 [View Article]
    [Google Scholar]
  79. Mitchell JH. Further studies on ringworm of the hands and feet. Arch Derm Syphilol 1922; 5:174–197 [View Article]
    [Google Scholar]
  80. Bitencourt TA, Rezende CP, Quaresemin NR, Moreno P, Hatanaka O et al. Extracellular vesicles from the dermatophyte Trichophyton interdigitale modulate macrophage and keratinocyte functions. Front Immunol 2018; 9:2343 [View Article]
    [Google Scholar]
  81. Honig PJ, Smith LR. Tinea capitis masquerading as atopic or seborrheic dermatitis. J Pediatr 1979; 94:604–605 [View Article]
    [Google Scholar]
  82. Siesenop U, Böhm KH. Comparative studies on keratinase production of Trichophyton mentagrophytes strains of animal origin. Mycoses 1995; 38:205–209 [View Article]
    [Google Scholar]
  83. Muhsin TM, Aubaid AH, Al-Duboon AH. Extracellular enzyme activities of dermatophytes and yeast isolates on solid media. Mycoses 1997; 40:465–469 [View Article]
    [Google Scholar]
  84. Abdel-Rahman SM, Sugita T, González GM, Ellis D, Arabatzis M et al. Divergence among an international population of Trichophyton tonsurans isolates. Mycopathologia 2010; 169:1–13 [View Article]
    [Google Scholar]
  85. Martinez DA, Oliver BG, Gräser Y, Goldberg JM, Li W et al. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. MBio 2012; 3:e00259–12 [View Article]
    [Google Scholar]
  86. Sulzberg M, Baer R, Hecht R. Common fungous infections of the feet and groins: negligible role of exposure in causing attacks. Arch Derm Syphilol 1942; 45:670–675
    [Google Scholar]
  87. Hopkins JG, Hillegas AB. Dermatophytosis at an infantry post; incidence and characteristics of infections by three species of fungi. J Invest Dermatol 1947; 8:291–316
    [Google Scholar]
  88. Baer RL, Rosenthal SA, Rogachefsky H, Litt JZ. Newer studies on the epidemiology of fungous infections of the feet. Am J Public Health Nations Health 1955; 45:784–790 [View Article]
    [Google Scholar]
  89. English MP. Trichophytonrubrum infection in families. Br Med J 1957; 1:744–746 [View Article]
    [Google Scholar]
  90. Many H, Derbes VJ, Friedman L. Trichophytonrubrum: exposure and infection within household groups. Arch Dermatol 1960; 82:226–229 [View Article]
    [Google Scholar]
  91. Schofield FD, Parkinson AD, Jeffrey D. Observations on the epidemiology, effects and treatment of Tinea imbricata. Trans R Soc Trop Med Hyg 1963; 57:214–227 [View Article]
    [Google Scholar]
  92. Ergin S, Ergin C, Erdoğan BS, Kaleli I, Evliyaoğlu D. An experience from an outbreak of tinea capitis gladiatorum due to Trichophyton tonsurans. Clin Exp Dermatol 2006; 31:212–214 [View Article]
    [Google Scholar]
  93. Shroba J, Olson-Burgess C, Preuett B, Abdel-Rahman SM. A large outbreak of Trichophyton tonsurans among health care workers in a pediatric hospital. Am J Infect Control 2009; 37:43–48 [View Article]
    [Google Scholar]
  94. Bonifaz A, Araiza J, Koffman-Alfaro S, Paredes-Solis V, Cuevas-Covarrubias S et al. Tinea imbricata: autosomal dominant pattern of susceptibility in a polygamous indigenous family of the Nahuatl zone in Mexico. Mycoses 2004; 47:288–291 [View Article]
    [Google Scholar]
  95. Ravine D, Turner KJ, Alpers MP. Genetic inheritance of susceptibility to Tineaimbricata. Pathology 1984; 16:106 [View Article]
    [Google Scholar]
  96. Hay RJ, Reid S, Talwat E, Macnamara K. Endemic Tinea imbricata—a study on Goodenough Island, Papua New Guinea. Trans R Soc Trop Med Hyg 1984; 78:246–251 [View Article]
    [Google Scholar]
  97. Dey NC, Maplestone PA. Tineaimbricata in India. Ind Med Gaz 1942; 77:5–6
    [Google Scholar]
  98. Polunin I. Tinea imbricata in Malaya. Br J Dermatol 1952; 64:378–384 [View Article]
    [Google Scholar]
  99. Reid S. Skin disease in Port Moresby, Papua New Guinea. Australas J Dermatol 1976; 17:1–6 [View Article]
    [Google Scholar]
  100. Douglas J. Pathogenesis of Osteochondrosis. Diagnosis Manag Lameness Horse, 2nd ed. 2010; 8 pp 617–625
    [Google Scholar]
  101. Chen PY, Lin AYM, Lin YS, Seki Y, Stokes AG et al. Structure and mechanical properties of selected biological materials. J Mech Behav Biomed Mater 2008; 1:208–226 [View Article]
    [Google Scholar]
  102. Fraser RDB, Parry DAD. Molecular packing in the feather keratin filament. J Struct Biol 2008; 162:1–13 [View Article]
    [Google Scholar]
  103. Daroit DJ, Brandelli A. A current assessment on the production of bacterial keratinases. Crit Rev Biotechnol 2014; 34:372–384 [View Article]
    [Google Scholar]
  104. Ng CS, Wu P, Fan WL, Yan J, Chen CK et al. Genomic organization, transcriptomic analysis, and functional characterization of avian α- and β-keratins in diverse feather forms. Genome Biol Evol 2014; 6:2258–2273 [View Article]
    [Google Scholar]
  105. Barsberg ST, Lee YI, Rasmussen HN. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy. Seed Sci Res 2018; 28:41–51 [View Article]
    [Google Scholar]
  106. Yazdanparast A, Jackson CJ, Barton RC, Evans EGV. Molecular strain typing of Trichophyton rubrum indicates multiple strain involvement in onychomycosis. Br J Dermatol 2003; 148:51–54 [View Article]
    [Google Scholar]
  107. Deng S, Bulmer GS, Summerbell RC, De Hoog GS, Hui Y et al. Changes in frequency of agents of Tineacapitis in school children from Western China suggest slow migration rates in dermatophytes. Med Mycol 2008; 46:421–427 [View Article]
    [Google Scholar]
  108. Néji S, Makni F, Cheikrouhou F, Sellami H, Trabelsi H et al. Les dermatomycoses à Trichophyton verrucosum à Sfax–Tunisie. J Mycol Med 2011; 21:198–201 [View Article]
    [Google Scholar]
  109. Rezusta A, de la Fuente S, Gilaberte Y, Vidal-García M, Alcalá L et al. Evaluation of incubation time for dermatophytes cultures. Mycoses 2016; 59:416–418 [View Article]
    [Google Scholar]
  110. Maraki S, Tselentis Y. Dermatophytoses in Crete, Greece, between 1992 and 1996. Mycoses 1998; 41:175–178 [View Article]
    [Google Scholar]
  111. Nowicki R. Dermatophytoses in the Gdańsk area, Poland: a 12-year survey. Mycoses 1996; 39:399–402 [View Article]
    [Google Scholar]
  112. Kuklová I, Kuĉerová H. Dermatophytoses in Prague, Czech Republic, between 1987 and 1998. Mycoses 2001; 44:493–496 [View Article]
    [Google Scholar]
  113. Tietz HJ, Kunzelmann V, Schönian G. Wandel des dermatomykologischen Erregerspektrums. Mycoses 1995; 38:33–39 [View Article]
    [Google Scholar]
  114. Nweze EI. Dermatophytoses in domesticated animals. Rev Inst Med Trop Sao Paulo 2011; 53:94–99 [View Article]
    [Google Scholar]
  115. Abdel-Rahman SM, Preuett BL. Genetic predictors of susceptibility to cutaneous fungal infections: a pilot genome wide association study to refine a candidate gene search. J Dermatol Sci 2012; 67:147–152 [View Article]
    [Google Scholar]
  116. Dahl MV, Carpenter R. Polymorphonuclear leukocytes, complement, and Trichophyton rubrum. J Invest Dermatol 1986; 86:138–141 [View Article]
    [Google Scholar]
  117. Yoshikawa FSY, De Almeida SR. The role of phagocytes and NETs in dermatophytosis. Mycopathologia 2017; 182:263–272 [View Article]
    [Google Scholar]
  118. Svejgaard E, Christiansen AH. Precipitating antibodies in dermatophytosis demonstrated by crossed immunoelectrophoresis. Acta Pathol Microbiol Scand C 1979; 87C:23–27
    [Google Scholar]
  119. Suite M, Moore MK, Hay RJ. Leucocyte chemotaxis to antigens of dermatophytes causing scalp ringworm. Clin Exp Dermatol 1987; 12:171–174 [View Article]
    [Google Scholar]
  120. Calderon RA, Hay RJ. Fungicidal activity of human neutrophils and monocytes on dermatophyte fungi, Trichophyton quinckeanum and Trichophyton rubrum. Immunology 1987; 61:289–295
    [Google Scholar]
  121. Campos MRM, Russo M, Gomes E, Almeida SR. Stimulation, inhibition and death of macrophages infected with Trichophyton rubrum. Microbes Infect 2006; 8:372–379 [View Article]
    [Google Scholar]
  122. Meymandi S, Silver SG, Crawford RI. Intraepidermal neutrophils - a clue to dermatophytosis?. J Cutan Pathol 2003; 30:253–255 [View Article]
    [Google Scholar]
  123. Szepes E, Magyarlaki M, Battyáni Z, Schneider I. Immunohistological characterization of the cellular infiltrate in dermatophytosis. Mycoses 1993; 36:203–206 [View Article]
    [Google Scholar]
  124. de Sousa MdaGT, Santana GB, Criado PR, Benard G. Chronic widespread dermatophytosis due to Trichophyton rubrum: a syndrome associated with a Trichophyton-specific functional defect of phagocytes. Front Microbiol 2015; 6:801 [View Article]
    [Google Scholar]
  125. Cambier L, Weatherspoon A, Defaweux V, Bagut ET, Heinen MP et al. Assessment of the cutaneous immune response during Arthroderma benhamiae and A. vanbreuseghemii infection using an experimental mouse model. Br J Dermatol 2014; 170:625–633 [View Article]
    [Google Scholar]
  126. De Oliveira CB, Vasconcellos C, Sakai-Valente NY, Sotto MN, Luiz FG et al. Toll-like receptors (TLR) 2 and 4 expression of keratinocytes from patients with localized and disseminated dermatophytosis. Rev Inst Med Trop Sao Paulo 2015; 57:57–61 [View Article]
    [Google Scholar]
  127. Huang X, Yi J, Yin S, Li M, Ye C et al. Trichophyton rubrum conidia modulate the expression and transport of toll-like receptor 2 in HaCaT cell. Microb Pathog 2015; 83-84:1–5 [View Article]
    [Google Scholar]
  128. Brasch J, Mörig A, Neumann B, Proksch E. Expression of antimicrobial peptides and toll-like receptors is increased in tinea and pityriasis versicolor. Mycoses 2014; 57:147–152 [View Article]
    [Google Scholar]
  129. Lanternier F, Pathan S, Vincent QB, Liu L, Cypowyj S et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med 2013; 369:1704–1714 [View Article]
    [Google Scholar]
  130. Roth S, Ruland J. Caspase recruitment domain-containing protein 9 signaling in innate immunity and inflammation. Trends Immunol 2013; 34:243–250 [View Article]
    [Google Scholar]
  131. Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet 2011; 43:1066–1073 [View Article]
    [Google Scholar]
  132. Roth S, Rottach A, Lotz-Havla AS, Laux V, Muschaweckh A et al. Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1β production. Nat Immunol 2014; 15:538–545 [View Article]
    [Google Scholar]
  133. Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E et al. Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 2009; 206:2037–2051 [View Article]
    [Google Scholar]
  134. Glocker EO, Hennigs A, Nabavi M, Schäffer AA, Woellner C et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 2009; 361:1727–1735 [View Article]
    [Google Scholar]
  135. Drewniak A, Gazendam RP, Tool ATJ, van Houdt M, Jansen MH et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood 2013; 121:2385–2392 [View Article]
    [Google Scholar]
  136. Jiménez-Puya R, Vázquez-Bayo C, Rodriguez-Bujaldón A, Gómez García F, Moreno-Giménez JC. Extensive tinea in a patient with severe combined immunodeficiency. Pediatr Dermatol 2009; 26:213–214 [View Article]
    [Google Scholar]
  137. Markert ML, Norby-Slycord C, Ward FE. A high proportion of ADA point mutations associated with a specific alanine-to-valine substitution. Am J Hum Genet 1989; 45:354–361
    [Google Scholar]
  138. Roberts DT. Prevalence of dermatophyte onychomycosis in the United Kingdom: results of an omnibus survey. Br J Dermatol 1992; 126:23–27 [View Article]
    [Google Scholar]
  139. Macura AB, Macura-Biegun A, Pawlik B. Susceptibility to fungal infections of nails in patients with primary antibody deficiency. Comp Immunol Microbiol Infect Dis 2003; 26:223–232 [View Article]
    [Google Scholar]
  140. Elewski BE. Clinical pearl: proximal white subungual onychomycosis in AIDS. J Am Acad Dermatol 1993; 29:631–632 [View Article]
    [Google Scholar]
  141. Woodfolk JA. Allergy and dermatophytes. Clin Microbiol Rev 2005; 18:30–43 [View Article]
    [Google Scholar]
  142. Tursen U, Kaya TI, Eskandari G, Bocekli E, Muslu N et al. Apolipoprotein E gene polymorphism and serum lipids in patients with superficial fungal disease. Yonsei Med J 2004; 45:375–379 [View Article]
    [Google Scholar]
  143. Kaya TI, Eskandari G, Guvenc U, Gunes G, Tursen U et al. CD4+CD25+ Treg cells in patients with toenail onychomycosis. Arch Dermatol Res 2009; 301:725–729 [View Article]
    [Google Scholar]
  144. Maleszka R, Adamski Z, Dworacki G. Evaluation of lymphocytes subpopulations and natural killer cells in peripheral blood of patients treated for dermatophyte onychomycosis. Mycoses 2001; 44:487–492 [View Article]
    [Google Scholar]
  145. DeBoer DJ, Moriello KA. Humoral and cellular immune responses to Microsporum canis in naturally occurring feline dermatophytosis. Med Mycol 1993; 31:121–132 [View Article]
    [Google Scholar]
  146. Degreef H. Clinical forms of dermatophytosis (ringworm infection). Mycopathologia 2008; 166:257–265 [View Article]
    [Google Scholar]
  147. Bǎguţ ET, Cambier L, Heinen MP, Cozma V, Monod M et al. Development of an enzyme-linked immunosorbent assay for serodiagnosis of ringworm infection in cattle. Clin Vaccine Immunol 2013; 20:1150–1154
    [Google Scholar]
  148. Persson G, Johansson-Jänkänpää E, Ganceviciene R, Karadag AS, Bilgili SG et al. No evidence for follicular keratinocyte hyperproliferation in acne lesions as compared to autologous healthy hair follicles. Exp Dermatol 2018; 27:668–671 [View Article]
    [Google Scholar]
  149. Esquenazi D, Alviano CS, de Souza W, Rozental S. The influence of surface carbohydrates during in vitro infection of mammalian cells by the dermatophyte Trichophyton rubrum. Res Microbiol 2004; 155:144–153 [View Article]
    [Google Scholar]
  150. Baldo A, Mathy A, Tabart J, Camponova P, Vermout S et al. Secreted subtilisin Sub3 from Microsporum canis is required for adherence to but not for invasion of the epidermis. Br J Dermatol 2010; 162:990–997 [View Article]
    [Google Scholar]
  151. Hung CY, Yu JJ, Seshan KR, Reichard U, Cole GT. A parasitic phase-specific adhesin of Coccidioides immitis contributes to the virulence of this respiratory fungal pathogen. Infect Immun 2002; 70:3443–3456 [View Article]
    [Google Scholar]
  152. Shiraki Y, Ishibashi Y, Hiruma M, Nishikawa A, Ikeda S. Cytokine secretion profiles of human keratinocytes during Trichophyton tonsurans and Arthroderma benhamiae infections. J Med Microbiol 2006; 55:1175–1185 [View Article]
    [Google Scholar]
  153. Bertoni L, Azzoni P, Reggiani C, Pisciotta A, Carnevale G et al. Ex vivo fluorescence confocal microscopy for intraoperative, real-time diagnosis of cutaneous inflammatory diseases: a preliminary study. Exp Dermatol 2018; 27:1152–1159 [View Article]
    [Google Scholar]
  154. Burmester A, Shelest E, Glöckner G, Heddergott C, Schindler S et al. Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biol 2011; 12:R7 [View Article]
    [Google Scholar]
  155. Heddergott C, Bruns S, Nietzsche S, Leonhardt I, Kurzai O et al. The Arthroderma benhamiae hydrophobin HypA mediates hydrophobicity and influences recognition by human immune effector cells. Eukaryot Cell 2012; 11:673–682 [View Article]
    [Google Scholar]
  156. Costa-Orlandi CB, Sardi JCO, Santos CT, Fusco-Almeida AM, Mendes-Giannini MJ. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms. Biofouling 2014; 30:719–727 [View Article]
    [Google Scholar]
  157. Vila TVM, Rozental S, de Sá Guimarães CMD. A new model of in vitro fungal biofilms formed on human nail fragments allows reliable testing of laser and light therapies against onychomycosis. Lasers Med Sci 2015; 30:1031–1039 [View Article]
    [Google Scholar]
  158. Sutherland IW. The biofilm matrix–an immobilized but dynamic microbial environment. Trends Microbiol 2001; 9:222–227 [View Article]
    [Google Scholar]
  159. Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms fungal biofilms Gordon Ramage, et al. Crit Rev Microbiol 2009; 35:340–355
    [Google Scholar]
  160. Burkharta CN, Burkhart CG, Gupta AK. Dermatophytoma: recalcitrance to treatment because of existence of fungal biofilm. J Am Acad Dermatol 2002; 47:629–631 [View Article]
    [Google Scholar]
  161. Harding MW, Marques LLR, Howard RJ, Olson ME. Can filamentous fungi form biofilms?. Trends Microbiol 2009; 17:475–480 [View Article]
    [Google Scholar]
  162. Percival SL, Emanuel C, Cutting KF, Williams DW. Microbiology of the skin and the role of biofilms in infection. Int Wound J 2012; 9:14–32 [View Article]
    [Google Scholar]
  163. Reynolds TB, Fink GR. Bakers’ yeast, a model for fungal biofilm formation. Science 2001; 291:878–881 [View Article]
    [Google Scholar]
  164. Pierard GE, Pierard-Franchimont C, Arrese JE. The boosted antifungal topical treatment (BATT) for onychomycosis. Med Mycol 2000; 38:391–392 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000982
Loading
/content/journal/jmm/10.1099/jmm.0.000982
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error