1887

Abstract

There have been several outbreaks of botulism among poultry and wild birds in Sweden in recent years. The National Veterinary Institute of Sweden (SVA) has identified botulinum neurotoxin (BoNT)/C1 or the mosaic BoNT/C1D using the mouse bioassay. This is believed to be the first report on the application of the Endopep mass spectrometry (Endopep-MS) method to selected clinical animal (serum and liver) samples and a feed sample that had previously given positive test results with the mouse bioassay. In the mouse bioassay eight of the eleven samples were found to be neutralized by both BoNT/C1 and /D antitoxins; the other three were neutralized only by BoNT/C1 antitoxin, but the mice showed a prolonged survival time when the samples had been treated with /D antitoxin. The Endopep-MS analysis, on the other hand, demonstrated only BoNT/C1 activity for all eleven samples. This suggests that at least eight of the samples were of the chimeric toxin type BoNT/C1D, where the enzymically active site is identical to that of BoNT/C1, while other parts of the protein contain sequences of BoNT/D. This is the first step of a cross-validation between the established mouse bioassay and the Endopep-MS of serotypes BoNT/C1 and /C1D. Endopep-MS is concluded to have potential as an attractive alternative to the mouse bioassay.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.031179-0
2011-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/9/1299.html?itemId=/content/journal/jmm/10.1099/jmm.0.031179-0&mimeType=html&fmt=ahah

References

  1. Barr J. R., Moura H., Boyer A. E., Woolfitt A. R., Kalb S. R., Pavlopoulos A., McWilliams L. G., Schmidt J. G., Martinez R. A., Ashley D. L. 2005; Botulinum neurotoxin detection and differentiation by mass spectrometry. Emerg Infect Dis 11:1578–1583[PubMed] [CrossRef]
    [Google Scholar]
  2. Blomqvist G., Skarin H., Lindberg A., Båverud V., Engström B. 2009; Surveillance for Clostridium botulinum type C or C/D in Swedish broilers. In The 16th World Vet Poultry Congress p. 415 Marrakesh, Morocco:
    [Google Scholar]
  3. Boyer A. E., Moura H., Woolfitt A. R., Kalb S. R., McWilliams L. G., Pavlopoulos A., Schmidt J. G., Ashley D. L., Barr J. R. 2005; From the mouse to the mass spectrometer: detection and differentiation of the endoproteinase activities of botulinum neurotoxins A–G by mass spectrometry. Anal Chem 77:3916–3924 [View Article][PubMed]
    [Google Scholar]
  4. Cai S., Singh B. R., Sharma S. 2007; Botulism diagnostics: from clinical symptoms to in vitro assays. Crit Rev Microbiol 33:109–125 [View Article][PubMed]
    [Google Scholar]
  5. Evans H. R., Holloway D. E., Sutton J. M., Ayriss J., Shone C. C., Acharya K. R. 2004; C3 exoenzyme from Clostridium botulinum: structure of a tetragonal crystal form and a reassessment of NAD-induced flexure. Acta Crystallogr D Biol Crystallogr 60:1502–1505 [View Article][PubMed]
    [Google Scholar]
  6. Evans E. R., Skipper P. J. A., Shone C. C. 2009; An assay for botulinum toxin types A, B and F that requires both functional binding and catalytic activities within the neurotoxin. J Appl Microbiol 107:1384–1391 [View Article][PubMed]
    [Google Scholar]
  7. Ferracci G., Marconi S., Mazuet C., Jover E., Blanchard M. P., Seagar M., Popoff M., Lévêque C. 2011; A label-free biosensor assay for botulinum neurotoxin B in food and human serum. Anal Biochem 410:281–288 [View Article][PubMed]
    [Google Scholar]
  8. Fujinaga Y., Inoue K., Watanabe S., Yokota K., Hirai Y., Nagamachi E., Oguma K. 1997; The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin. Microbiology 143:3841–3847 [View Article][PubMed]
    [Google Scholar]
  9. Hallis B., James B. A., Shone C. C. 1996; Development of novel assays for botulinum type A and B neurotoxins based on their endopeptidase activities. J Clin Microbiol 34:1934–1938[PubMed]
    [Google Scholar]
  10. Johnson E. A., Montecucco C. 2008; Botulism. In Handbook of Clinical Neurology, 2008/07/18 edn. vol. 91 pp. 333–368 Edited by Vinken P. J., Bruyn G. W. New York/Amsterdam: Elsevier.;
    [Google Scholar]
  11. Jones R. G., Liu Y., Sesardic D. 2009; New highly specific botulinum type C1 endopeptidase immunoassays utilising SNAP25 or Syntaxin substrates. J Immunol Methods 343:21–27 [View Article][PubMed]
    [Google Scholar]
  12. Kalb S. R., Goodnough M. C., Malizio C. J., Pirkle J. L., Barr J. R. 2005; Detection of botulinum neurotoxin A in a spiked milk sample with subtype identification through toxin proteomics. Anal Chem 77:6140–6146 [View Article][PubMed]
    [Google Scholar]
  13. Kalb S. R., Moura H., Boyer A. E., McWilliams L. G., Pirkle J. L., Barr J. R. 2006; The use of Endopep-MS for the detection of botulinum toxins A, B, E, and F in serum and stool samples. Anal Biochem 351:84–92 [View Article][PubMed]
    [Google Scholar]
  14. Kautter D. A., Solomon H. M. 1977; Collaborative study of a method for the detection of Clostridium botulinum and its toxins in foods. J Assoc Off Anal Chem 60:541–545[PubMed]
    [Google Scholar]
  15. Lindberg A., Skarin H., Knutsson R., Blomqvist G., Båverud V. 2010; Real-time PCR for Clostridium botulinum type C neurotoxin (BoNTC) gene, also covering a chimeric C/D sequence – application on outbreaks of botulism in poultry. Vet Microbiol 146:118–123 [View Article][PubMed]
    [Google Scholar]
  16. Lindström M., Nevas M., Kurki J., Sauna-aho R., Latvala-Kiesilä A., Pölönen I., Korkeala H. 2004; Type C botulism due to toxic feed affecting 52,000 farmed foxes and minks in Finland. J Clin Microbiol 42:4718–4725 [View Article][PubMed]
    [Google Scholar]
  17. Maksymowych A. B., Reinhard M., Malizio C. J., Goodnough M. C., Johnson E. A., Simpson L. L. 1999; Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade. Infect Immun 67:4708–4712[PubMed]
    [Google Scholar]
  18. Moura H., Kalb S. R., Woolfitt A. R., Gallegos-Candela M., Smith T. J., Smith L. A., Marks J. D., Lou J., Garcia-Rodriguez C. other authors 2008; Revisiting botulinum neurotoxins C and D using Endopep-MS and proteomics. In 45th Annual Interagency Botulism Research Coordinating Committee (IBRCC) Meeting Philadelphia, PA, USA:
    [Google Scholar]
  19. Moura H., Terilli R. R., Woolfitt A. R., Gallegos-Candela M., McWilliams L. G., Solano M. I., Pirkle J. L., Barr J. R. 2011; Studies on botulinum neurotoxins type /C1 and mosaic/DC using Endopep-MS and proteomics. FEMS Immunol Med Microbiol 61:288–300 [View Article][PubMed]
    [Google Scholar]
  20. Nakamura K., Kohda T., Umeda K., Yamamoto H., Mukamoto M., Kozaki S. 2010; Characterization of the D/C mosaic neurotoxin produced by Clostridium botulinum associated with bovine botulism in Japan. Vet Microbiol 140:147–154 [View Article][PubMed]
    [Google Scholar]
  21. Neimanis A., Gavier-Widén D., Leighton F., Bollinger T., Rocke T., Mörner T. 2007; An outbreak of type C botulism in herring gulls (Larus argentatus) in southeastern Sweden. J Wildl Dis 43:327–336[PubMed] [CrossRef]
    [Google Scholar]
  22. NMKL 1991 Botulinum Toxin, Detection in Foods, Blood and Other Test Materials, 2nd edn. vol. 79 Oslo: Nordic Committee on Food Analysis;
    [Google Scholar]
  23. Quinn P. J., Carter M. E., Markey B. K., Carter G. R. 1994; Clostridium species. In Clinical Veterinary Microbiology pp. 196–200 London: Wolfe Publishing;
    [Google Scholar]
  24. Schiavo G., Matteoli M., Montecucco C. 2000; Neurotoxins affecting neuroexocytosis. Physiol Rev 80:717–766[PubMed]
    [Google Scholar]
  25. Shin N. R., Byun S. H., Chun J. H., Shin J. H., Kim Y. J., Kim J. H., Rhie G. E., Chung H. M., Mo I. P., Yoo C. K. 2010; An outbreak of type C botulism in waterbirds: Incheon, Korea. J Wildl Dis 46:912–917[PubMed] [CrossRef]
    [Google Scholar]
  26. Skarin H., Lindberg A., Blomqvist G., Aspán A., Båverud V. 2010; Molecular characterization and comparison of Clostridium botulinum type C avian strains. Avian Pathol 39:511–518 [View Article][PubMed]
    [Google Scholar]
  27. Takeda M., Tsukamoto K., Kohda T., Matsui M., Mukamoto M., Kozaki S. 2005; Characterization of the neurotoxin produced by isolates associated with avian botulism. Avian Dis 49:376–381 [View Article][PubMed]
    [Google Scholar]
  28. Wictome M., Shone C. C. 1998; Botulinum neurotoxins: mode of action and detection. Symp Ser Soc Appl Microbiol 27:87S–97S[PubMed] [CrossRef]
    [Google Scholar]
  29. Wictome M., Newton K. A., Jameson K., Dunnigan P., Clarke S., Gaze J., Tauk A., Foster K. A., Shone C. C. 1999a; Development of in vitro assays for the detection of botulinum toxins in foods. FEMS Immunol Med Microbiol 24:319–323 [View Article][PubMed]
    [Google Scholar]
  30. Wictome M., Newton K., Jameson K., Hallis B., Dunnigan P., Mackay E., Clarke S., Taylor R., Gaze J. et al. 1999b; Development of an in vitro bioassay for Clostridium botulinum type B neurotoxin in foods that is more sensitive than the mouse bioassay. Appl Environ Microbiol 65:3787–3792[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.031179-0
Loading
/content/journal/jmm/10.1099/jmm.0.031179-0
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error