1887

Abstract

is a highly virulent intracellular bacterium capable of rapid multiplication in phagocytic cells. Previous studies have revealed that activation of -infected macrophages leads to control of infection and reactive nitrogen and oxygen species make important contributions to the bacterial killing. We investigated the effects of adding -nitroso-acetyl-penicillamine (SNAP), which generates nitric oxide, or 3-morpholinosydnonimine hydrochloride, which indirectly leads to formation of peroxynitrite, to J774 murine macrophage-like cell cultures infected with LVS. Addition of SNAP led to significantly increased colocalization between LAMP-1 and bacteria, indicating containment of in the phagosome within 2 h, although no killing occurred within 4 h. A specific inhibitory effect on bacterial transcription was observed since the gene encoding the global regulator MglA was inhibited 50–100-fold. -infected J774 cells were incapable of secreting TNF-α in response to LPS but addition of SNAP almost completely reversed the suppression. Similarly, infection with an MglA mutant did not inhibit LPS-induced TNF-α secretion of J774 cells. Strong staining of nitrotyrosine was observed in SNAP-treated bacteria, and MS identified nitration of two ribosomal 50S proteins, a CBS domain pair protein and bacterioferritin. The results demonstrated that addition of SNAP initially did not affect the viability of intracellular LVS but led to containment of the bacteria in the phagosome. Moreover, the treatment resulted in modification by nitration of several proteins.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.032870-0
2011-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/11/1570.html?itemId=/content/journal/jmm/10.1099/jmm.0.032870-0&mimeType=html&fmt=ahah

References

  1. Andersson H., Hartmanová B., Rydén P., Noppa L., Näslund L., Sjöstedt A. 2006; A microarray analysis of the murine macrophage response to infection with Francisella tularensis LVS. J Med Microbiol 55:1023–1033 [View Article][PubMed]
    [Google Scholar]
  2. Bogdan C. 2001; Nitric oxide and the immune response. Nat Immunol 2:907–916 [View Article][PubMed]
    [Google Scholar]
  3. Bönquist L., Lindgren H., Golovliov I., Guina T., Sjöstedt A. 2008; MglA and Igl proteins contribute to the modulation of Francisella tularensis live vaccine strain-containing phagosomes in murine macrophages. Infect Immun 76:3502–3510 [View Article][PubMed]
    [Google Scholar]
  4. Bröms J. E., Lavander M., Sjöstedt A. 2009; A conserved alpha-helix essential for a type VI secretion-like system of Francisella tularensis . J Bacteriol 191:2431–2446 [View Article][PubMed]
    [Google Scholar]
  5. Bröms J. E., Sjöstedt A., Lavander M. 2010; The role of the Francisella tularensis pathogenicity island in type VI secretion, intracellular survival, and modulation of host cell signaling. Front Microbiol 1:136[PubMed] [CrossRef]
    [Google Scholar]
  6. Carrondo M. A. 2003; Ferritins, iron uptake and storage from the bacterioferritin viewpoint. EMBO J 22:1959–1968 [View Article][PubMed]
    [Google Scholar]
  7. Charity J. C., Costante-Hamm M. M., Balon E. L., Boyd D. H., Rubin E. J., Dove S. L. 2007; Twin RNA polymerase-associated proteins control virulence gene expression in Francisella tularensis . PLoS Pathog 3:e84 [View Article][PubMed]
    [Google Scholar]
  8. Checroun C., Wehrly T. D., Fischer E. R., Hayes S. F., Celli J. 2006; Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci U S A 103:14578–14583 [View Article][PubMed]
    [Google Scholar]
  9. Chong A., Wehrly T. D., Nair V., Fischer E. R., Barker J. R., Klose K. E., Celli J. 2008; The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect Immun 76:5488–5499 [View Article][PubMed]
    [Google Scholar]
  10. Clemens D. L., Lee B. Y., Horwitz M. A. 2004; Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun 72:3204–3217 [View Article][PubMed]
    [Google Scholar]
  11. Dai S., Mohapatra N. P., Schlesinger L. S., Gunn J. S. 2011; Regulation of Francisella tularensis virulence. Front Microbiol 1:144 [View Article][PubMed]
    [Google Scholar]
  12. Edwards J. A., Rockx-Brouwer D., Nair V., Celli J. 2010; Restricted cytosolic growth of Francisella tularensis subsp. tularensis by IFN-γ activation of macrophages. Microbiology 156:327–339 [View Article][PubMed]
    [Google Scholar]
  13. Elkins K. L., Cowley S. C., Bosio C. M. 2007; Innate and adaptive immunity to Francisella . Ann N Y Acad Sci 1105:284–324 [View Article][PubMed]
    [Google Scholar]
  14. Feelisch M., Kelm M. 1991; Biotransformation of organic nitrates to nitric oxide by vascular smooth muscle and endothelial cells. Biochem Biophys Res Commun 180:286–293 [View Article][PubMed]
    [Google Scholar]
  15. Ferrer-Sueta G., Radi R. 2009; Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4:161–177 [View Article][PubMed]
    [Google Scholar]
  16. Forsberg A. J., Pavitt G. D., Higgins C. F. 1994; Use of transcriptional fusions to monitor gene expression: a cautionary tale. J Bacteriol 176:2128–2132[PubMed]
    [Google Scholar]
  17. Garbán H. J., Bonavida B. 2001; Nitric oxide disrupts H2O2-dependent activation of nuclear factor κB. Role in sensitization of human tumor cells to tumor necrosis factor-α-induced cytotoxicity. J Biol Chem 276:8918–8923 [View Article][PubMed]
    [Google Scholar]
  18. Golovliov I., Sjöstedt A., Mokrievich A., Pavlov V. 2003a; A method for allelic replacement in Francisella tularensis . FEMS Microbiol Lett 222:273–280 [View Article][PubMed]
    [Google Scholar]
  19. Golovliov I., Baranov V., Krocova Z., Kovarova H., Sjöstedt A. 2003b; An attenuated strain of the facultative intracellular bacterium Francisella tularensis can escape the phagosome of monocytic cells. Infect Immun 71:5940–5950 [View Article][PubMed]
    [Google Scholar]
  20. Gordon S. 2003; Alternative activation of macrophages. Nat Rev Immunol 3:23–35 [View Article][PubMed]
    [Google Scholar]
  21. Larsson P., Oyston P. C. F., Chain P., Chu M. C., Duffield M., Fuxelius H.-H., Garcia E., Hälltorp G., Johansson D. et al. 2005; The complete genome sequence of Francisella tularensis, the causative agent of tularemia. Nat Genet 37:153–159 [View Article][PubMed]
    [Google Scholar]
  22. Lauriano C. M., Barker J. R., Yoon S. S., Nano F. E., Arulanandam B. P., Hassett D. J., Klose K. E. 2004; MglA regulates transcription of virulence factors necessary for Francisella tularensis intraamoebae and intramacrophage survival. Proc Natl Acad Sci U S A 101:4246–4249 [View Article][PubMed]
    [Google Scholar]
  23. Lindgren H., Golovliov I., Baranov V., Ernst R. K., Telepnev M., Sjöstedt A. 2004; Factors affecting the escape of Francisella tularensis from the phagolysosome. J Med Microbiol 53:953–958 [View Article][PubMed]
    [Google Scholar]
  24. Lindgren H., Stenman L., Tärnvik A., Sjöstedt A. 2005; The contribution of reactive nitrogen and oxygen species to the killing of Francisella tularensis LVS by murine macrophages. Microbes Infect 7:467–475 [View Article][PubMed]
    [Google Scholar]
  25. Liochev S. I., Fridovich I. 1999; Superoxide and iron: partners in crime. IUBMB Life 48:157–161[PubMed] [CrossRef]
    [Google Scholar]
  26. McCollister B. D., Bourret T. J., Gill R., Jones-Carson J., Vázquez-Torres A. 2005; Repression of SPI2 transcription by nitric oxide-producing, IFNγ-activated macrophages promotes maturation of Salmonella phagosomes. J Exp Med 202:625–635 [View Article][PubMed]
    [Google Scholar]
  27. Misko T. P., Highkin M. K., Veenhuizen A. W., Manning P. T., Stern M. K., Currie M. G., Salvemini D. 1998; Characterization of the cytoprotective action of peroxynitrite decomposition catalysts. J Biol Chem 273:15646–15653 [View Article][PubMed]
    [Google Scholar]
  28. Möller M. N., Li Q., Lancaster J. R. Jr, Denicola A. 2007; Acceleration of nitric oxide autoxidation and nitrosation by membranes. IUBMB Life 59:243–248 [View Article][PubMed]
    [Google Scholar]
  29. Nano F. E., Schmerk C. 2007; The Francisella pathogenicity island. Ann N Y Acad Sci 1105:122–137 [View Article][PubMed]
    [Google Scholar]
  30. Oyston P. C. 2008; Francisella tularensis: unravelling the secrets of an intracellular pathogen. J Med Microbiol 57:921–930 [View Article][PubMed]
    [Google Scholar]
  31. Parsa K. V., Butchar J. P., Rajaram M. V., Cremer T. J., Gunn J. S., Schlesinger L. S., Tridandapani S. 2008; Francisella gains a survival advantage within mononuclear phagocytes by suppressing the host IFNγ response. Mol Immunol 45:3428–3437 [View Article][PubMed]
    [Google Scholar]
  32. Radi R. 2004; Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A 101:4003–4008 [View Article][PubMed]
    [Google Scholar]
  33. Rajaram M. V., Ganesan L. P., Parsa K. V., Butchar J. P., Gunn J. S., Tridandapani S. 2006; Akt/Protein kinase B modulates macrophage inflammatory response to Francisella infection and confers a survival advantage in mice. J Immunol 177:6317–6324[PubMed] [CrossRef]
    [Google Scholar]
  34. Reiter T. A. 2006; NO* chemistry: a diversity of targets in the cell. Redox Rep 11:194–206 [View Article][PubMed]
    [Google Scholar]
  35. Roth K. M., Gunn J. S., Lafuse W., Satoskar A. R. 2009; Francisella inhibits STAT1-mediated signaling in macrophages and prevents activation of antigen-specific T cells. Int Immunol 21:19–28 [View Article][PubMed]
    [Google Scholar]
  36. Rubbo H., Radi R. 2008; Protein and lipid nitration: role in redox signaling and injury. Biochim Biophys Acta 1780:1318–1324[PubMed] [CrossRef]
    [Google Scholar]
  37. Santic M., Molmeret M., Klose K. E., Jones S., Kwaik Y. A. 2005; The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol 7:969–979 [View Article][PubMed]
    [Google Scholar]
  38. Schmittgen T. D., Livak K. J. 2008; Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108 [View Article][PubMed]
    [Google Scholar]
  39. Shirey K. A., Cole L. E., Keegan A. D., Vogel S. N. 2008; Francisella tularensis live vaccine strain induces macrophage alternative activation as a survival mechanism. J Immunol 181:4159–4167[PubMed] [CrossRef]
    [Google Scholar]
  40. Sjöstedt A. 2006; Intracellular survival mechanisms of Francisella tularensis, a stealth pathogen. Microbes Infect 8:561–567 [View Article][PubMed]
    [Google Scholar]
  41. Sullivan J. T., Jeffery E. F., Shannon J. D., Ramakrishnan G. 2006; Characterization of the siderophore of Francisella tularensis and role of fslA in siderophore production. J Bacteriol 188:3785–3795 [View Article][PubMed]
    [Google Scholar]
  42. Szabó C., Salzman A. L. 1995; Endogenous peroxynitrite is involved in the inhibition of mitochondrial respiration in immuno-stimulated J774.2 macrophages. Biochem Biophys Res Commun 209:739–743 [View Article][PubMed]
    [Google Scholar]
  43. Telepnev M., Golovliov I., Grundström T., Tärnvik A., Sjöstedt A. 2003; Francisella tularensis inhibits Toll-like receptor-mediated activation of intracellular signalling and secretion of TNF-α and IL-1 from murine macrophages. Cell Microbiol 5:41–51 [View Article][PubMed]
    [Google Scholar]
  44. Telepnev M., Golovliov I., Sjöstedt A. 2005; Francisella tularensis LVS initially activates but subsequently down-regulates intracellular signaling and cytokine secretion in mouse monocytic and human peripheral blood mononuclear cells. Microb Pathog 38:239–247 [View Article][PubMed]
    [Google Scholar]
  45. Valko M., Leibfritz D., Moncol J., Cronin M. T., Mazur M., Telser J. 2007; Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84 [View Article][PubMed]
    [Google Scholar]
  46. Virág L., Szabó E., Gergely P., Szabó C. 2003; Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol Lett 140–141:113–124 [View Article][PubMed]
    [Google Scholar]
  47. Wehrly T. D., Chong A., Virtaneva K., Sturdevant D. E., Child R., Edwards J. A., Brouwer D., Nair V., Fischer E. R. et al. 2009; Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages. Cell Microbiol 11:1128–1150 [View Article][PubMed]
    [Google Scholar]
  48. Woolard M. D., Wilson J. E., Hensley L. L., Jania L. A., Kawula T. H., Drake J. R., Frelinger J. A. 2007; Francisella tularensis-infected macrophages release prostaglandin E2 that blocks T cell proliferation and promotes a Th2-like response. J Immunol 178:2065–2074[PubMed] [CrossRef]
    [Google Scholar]
  49. Xiong S., She H., Takeuchi H., Han B., Engelhardt J. F., Barton C. H., Zandi E., Giulivi C., Tsukamoto H. 2003; Signaling role of intracellular iron in NF-κB activation. J Biol Chem 278:17646–17654 [View Article][PubMed]
    [Google Scholar]
  50. Xiong H., Zhu C., Li F., Hegazi R., He K., Babyatsky M., Bauer A. J., Plevy S. E. 2004; Inhibition of interleukin-12 p40 transcription and NF-κB activation by nitric oxide in murine macrophages and dendritic cells. J Biol Chem 279:10776–10783 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.032870-0
Loading
/content/journal/jmm/10.1099/jmm.0.032870-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error