1887

Abstract

is a multi-resistant opportunistic nosocomial pathogen responsible for several outbreaks worldwide. It can cause several infections at various sites of the body. One of the main infections caused by this bacterium is ventilator-associated pneumonia in patients in intensive care units. Treating these infections is becoming difficult because of the high resistance to antimicrobial agents. This study compared the expression of the chromosomally encoded gene in isolates having IS, IS and no insertion upstream of the gene in clinical isolates. It showed that the expression of was six times greater when IS was present upstream of the gene in comparison with the constitutively expressed gene with no insertion present upstream. The study indicated that IS has better promoters than IS and this is responsible for the overexpression of the gene as they share considerable homology to the well-established promoters. The −10 box of IS formed a fusion promoter with the −35 box of the gene causing the gene to be significantly overexpressed. The ability to upregulate the expression of with the assistance of different insertion elements such as IS and IS has become an important factor in resistance to cephalosporins.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.044156-0
2012-08-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/8/1103.html?itemId=/content/journal/jmm/10.1099/jmm.0.044156-0&mimeType=html&fmt=ahah

References

  1. Bossi L., Figueroa-Bossi N. 2007; A small RNA downregulates LamB maltoporin in Salmonella . Mol Microbiol 65:799–810 [View Article][PubMed]
    [Google Scholar]
  2. Bou G., Martínez-Beltrán J. 2000; Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC β-lactamase in Acinetobacter baumannii . Antimicrob Agents Chemother 44:428–432 [View Article][PubMed]
    [Google Scholar]
  3. BSAC 2010 Methods for Antimicrobial Susceptibility Testing, version 9.1. Birmingham:: British Society for Antimicrobial Chemotherapy;
    [Google Scholar]
  4. Bush K., Jacoby G. A., Medeiros A. A. 1995; A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233[PubMed] [CrossRef]
    [Google Scholar]
  5. Caroff N., Espaze E., Gautreau D., Richet H., Reynaud A. 2000; Analysis of the effects of -42 and -32 ampC promoter mutations in clinical isolates of Escherichia coli hyperproducing AmpC. J Antimicrob Chemother 45:783–788 [View Article][PubMed]
    [Google Scholar]
  6. Cisneros J. M., Rodríguez-Baño J. 2002; Nosocomial bacteremia due to Acinetobacter baumannii: epidemiology, clinical features and treatment. Clin Microbiol Infect 8:687–693 [View Article][PubMed]
    [Google Scholar]
  7. Corvec S., Caroff N., Espaze E., Giraudeau C., Drugeon H., Reynaud A. 2003; AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J Antimicrob Chemother 52:629–635 [View Article][PubMed]
    [Google Scholar]
  8. Corvec S., Poirel L., Naas T., Drugeon H., Nordmann P. 2007; Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene bla OXA-23 in Acinetobacter baumannii . Antimicrob Agents Chemother 51:1530–1533 [View Article][PubMed]
    [Google Scholar]
  9. Dolzani L., Tonin E., Lagatolla C., Prandin L., Monti-Bragadin C. 1995; Identification of Acinetobacter isolates in the A. calcoaceticus-A. baumannii complex by restriction analysis of the 16S-23S rRNA intergenic-spacer sequences. J Clin Microbiol 33:1108–1113[PubMed]
    [Google Scholar]
  10. Figueiredo S., Poirel L., Croize J., Recule C., Nordmann P. 2009; In vivo selection of reduced susceptibility to carbapenems in Acinetobacter baumannii related to ISAba1-mediated overexpression of the natural bla OXA-66 oxacillinase gene. Antimicrob Agents Chemother 53:2657–2659 [View Article][PubMed]
    [Google Scholar]
  11. Héritier C., Poirel L., Fournier P. E., Claverie J. M., Raoult D., Nordmann P. 2005; Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii . Antimicrob Agents Chemother 49:4174–4179 [View Article][PubMed]
    [Google Scholar]
  12. Héritier C., Poirel L., Nordmann P. 2006; Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii . Clin Microbiol Infect 12:123–130 [View Article][PubMed]
    [Google Scholar]
  13. Hornsey M., Phee L., Wareham D. W. 2011; A novel variant, NDM-5, of the New Delhi metallo-β-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrob Agents Chemother 55:5952–5954 [View Article][PubMed]
    [Google Scholar]
  14. Lee E. W., Huda M. N., Kuroda T., Mizushima T., Tsuchiya T. 2003; EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis . Antimicrob Agents Chemother 47:3733–3738 [View Article][PubMed]
    [Google Scholar]
  15. Levin A. S., Levy C. E., Manrique A. E., Medeiros E. A., Costa S. F. 2003; Severe nosocomial infections with imipenem-resistant Acinetobacter baumannii treated with ampicillin/sulbactam. Int J Antimicrob Agents 21:58–62 [View Article][PubMed]
    [Google Scholar]
  16. Lin L., Ling B. D., Li X. Z. 2009; Distribution of the multidrug efflux pump genes, adeABC, adeDE and adeIJK, and class 1 integron genes in multiple-antimicrobial-resistant clinical isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex. Int J Antimicrob Agents 33:27–32 [View Article][PubMed]
    [Google Scholar]
  17. Livermore D. M., Brown D. F. J. 2001; Detection of β-lactamase-mediated resistance. J Antimicrob Chemother 48:Suppl. 159–64 [View Article][PubMed]
    [Google Scholar]
  18. Mammeri H., Nordmann P. 2007; Extended-spectrum cephalosporinases in Enterobacteriaceae . Anti-infect Agents Med Chem 6:71–82 [CrossRef]
    [Google Scholar]
  19. Mammeri H., Poirel L., Mangeney N., Nordmann P. 2003; Chromosomal integration of a cephalosporinase gene from Acinetobacter baumannii into Oligella urethralis as a source of acquired resistance to β-lactams. Antimicrob Agents Chemother 47:1536–1542 [View Article][PubMed]
    [Google Scholar]
  20. Moubareck C., Brémont S., Conroy M. C., Courvalin P., Lambert T. 2009; GES-11, a novel integron-associated GES variant in Acinetobacter baumannii . Antimicrob Agents Chemother 53:3579–3581 [View Article][PubMed]
    [Google Scholar]
  21. Mugnier P. D., Poirel L., Nordmann P. 2009; Functional analysis of insertion sequence ISAba1, responsible for genomic plasticity of Acinetobacter baumannii . J Bacteriol 191:2414–2418 [View Article][PubMed]
    [Google Scholar]
  22. Mussi M. A., Limansky A. S., Viale A. M. 2005; Acquisition of resistance to carbapenems in multidrug-resistant clinical strains of Acinetobacter baumannii: natural insertional inactivation of a gene encoding a member of a novel family of β-barrel outer membrane proteins. Antimicrob Agents Chemother 49:1432–1440 [View Article][PubMed]
    [Google Scholar]
  23. Nordmann P., Boulanger A. E., Poirel L. 2012; NDM-4 metallo-β-lactamase with increased carbapenemase activity from Escherichia coli . Antimicrob Agents Chemother 56:2184–2186 [View Article][PubMed]
    [Google Scholar]
  24. Pfeifer Y., Wilharm G., Zander E., Wichelhaus T. A., Göttig S., Hunfeld K. P., Seifert H., Witte W., Higgins P. G. 2011; Molecular characterization of bla NDM-1 in an Acinetobacter baumannii strain isolated in Germany in 2007. J Antimicrob Chemother 66:1998–2001 [View Article][PubMed]
    [Google Scholar]
  25. Philippon A., Arlet G., Jacoby G. A. 2002; Plasmid-determined AmpC-type β-lactamases. Antimicrob Agents Chemother 46:1–11 [View Article][PubMed]
    [Google Scholar]
  26. Poirel L., Nordmann P. 2006; Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene bla OXA-58 in Acinetobacter baumannii . Antimicrob Agents Chemother 50:1442–1448 [View Article][PubMed]
    [Google Scholar]
  27. Ruiz M., Marti S., Fernandez-Cuenca F., Pascual A., Vila J. 2007; Prevalence of ISAba1 in epidemiologically unrelated Acinetobacter baumannii clinical isolates. FEMS Microbiol Lett 274:63–66 [View Article][PubMed]
    [Google Scholar]
  28. Sanders C. C. 1987; Chromosomal cephalosporinases responsible for multiple resistance to newer β-lactam antibiotics. Annu Rev Microbiol 41:573–594 [View Article][PubMed]
    [Google Scholar]
  29. Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M. 2006; ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36 [View Article][PubMed]
    [Google Scholar]
  30. Szabó D., Silveira F., Hujer A. M., Bonomo R. A., Hujer K. M., Marsh J. W., Bethel C. R., Doi Y., Deeley K., Paterson D. L. 2006; Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae . Antimicrob Agents Chemother 50:2833–2835 [View Article][PubMed]
    [Google Scholar]
  31. Weill F. X., Demartin M., Tandé D., Espié E., Rakotoarivony I., Grimont P. A. D. 2004; SHV-12-like extended-spectrum-β-lactamase-producing strains of Salmonella enterica serotypes Babelsberg and Enteritidis isolated in France among infants adopted from Mali. J Clin Microbiol 42:2432–2437 [View Article][PubMed]
    [Google Scholar]
  32. Woodford N., Ellington M. J., Coelho J. M., Turton J. F., Ward M. E., Brown S., Amyes S. G. B., Livermore D. M. 2006; Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 27:351–353 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.044156-0
Loading
/content/journal/jmm/10.1099/jmm.0.044156-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error