1887

Abstract

toxin synthesis is growth phase-dependent and is regulated by various environmental signals. The toxin genes and are located in a pathogenicity locus, which also includes three accessory genes, , and . TcdR has been shown to act as an alternative factor that mediates positive regulation of both the toxin genes and its own gene. The , and genes are transcribed during the stationary growth phase. The gene, however, is expressed during exponential phase. This expression pattern suggested that TcdC may act as a negative regulator of toxin gene expression. TcdC is a small acidic protein without any conserved DNA-binding motif. It is able to form dimers and its N-terminal region includes a putative transmembrane domain. Genetic and biochemical evidence showed that TcdC negatively regulates toxin synthesis by interfering with the ability of TcdR-containing RNA polymerase to recognize the and promoters. In addition, the NAP1/027 epidemic strains that produce higher levels of toxins have mutations in . Interestingly, a frameshift mutation at position 117 of the coding sequence seems to be, at least in part, responsible for the hypertoxigenicity phenotype of these epidemic strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47775-0
2008-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/6/685.html?itemId=/content/journal/jmm/10.1099/jmm.0.47775-0&mimeType=html&fmt=ahah

References

  1. Ades S. E. 2004; Control of the alternative sigma factor sigmaE in Escherichia coli . Curr Opin Microbiol 7:157–162 [CrossRef]
    [Google Scholar]
  2. Akerlund T., Svenungsson B., Lagergren A., Burman L. G. 2006; Correlation of disease severity with fecal toxin levels in patients with Clostridium difficile -associated diarrhea and distribution of PCR ribotypes and toxin yields in vitro of corresponding isolates. J Clin Microbiol 44:353–358 [CrossRef]
    [Google Scholar]
  3. Borriello S. P., Ketley J. M., Mitchell T. J., Barclay F. E., Welch A. R., Price A. B., Stephen J. 1987; Clostridium difficile – a spectrum of virulence and analysis of putative virulence determinants in the hamster model of antibiotic-associated colitis. J Med Microbiol 24:53–64 [CrossRef]
    [Google Scholar]
  4. Braun V., Hundsberger T., Leukel P., Sauerborn M., von Eichel-Streiber C. 1996; Definition of the single integration site of the pathogenicity locus in Clostridium difficile . Gene 181:29–38 [CrossRef]
    [Google Scholar]
  5. Brown K. L., Hughes K. T. 1995; The role of anti-sigma factors in gene regulation. Mol Microbiol 16:397–404 [CrossRef]
    [Google Scholar]
  6. Dineen S. S., Villapakkam A. C., Nordman J. T., Sonenshein A. L. 2007; Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol 66:206–219 [CrossRef]
    [Google Scholar]
  7. Dupuy B., Sonenshein A. L. 1998; Regulated transcription of Clostridium difficile toxin genes. Mol Microbiol 27:107–120 [CrossRef]
    [Google Scholar]
  8. Dupuy B., Mani N., Katayama S., Sonenshein A. L. 2005; Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor. Mol Microbiol 55:1196–1206
    [Google Scholar]
  9. Geszvain K., Landick R. 2005; The structure of bacterial RNA polymerase. http://www.bact.wisc.edu/landick/
  10. Govind R., Vediyappan G., Rolfe R. D., Fralick J. A. 2006; Evidence that Clostridium difficile TcdC is a membrane-associated protein. J Bacteriol 188:3716–3720 [CrossRef]
    [Google Scholar]
  11. Haslam S. C., Ketley J. M., Mitchell T. J., Stephen J., Burdon D. W., Candy D. C. 1986; Growth of Clostridium difficile and production of toxins A and B in complex and defined media. J Med Microbiol 21:293–297 [CrossRef]
    [Google Scholar]
  12. Helmann J. D. 1999; Anti-sigma factors. Curr Opin Microbiol 2:135–141 [CrossRef]
    [Google Scholar]
  13. Honda T., Hernadez I., Katoh T., Miwatani T. 1983; Stimulation of enterotoxin production of Clostridium difficile by antibiotics. Lancet 1:655
    [Google Scholar]
  14. Hundsberger T., Braun V., Weidmann M., Leukel P., Sauerborn M., von Eichel-Streiber C. 1997; Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile . Eur J Biochem 244:735–742 [CrossRef]
    [Google Scholar]
  15. Karlinsey J. E., Tanaka S., Bettenworth V., Yamaguchi S., Boos W., Aizawa S. I., Hughes K. T. 2000; Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol Microbiol 37:1220–1231 [CrossRef]
    [Google Scholar]
  16. Karlsson S., Burman L. G., Akerlund T. 1999; Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology 145:1683–1693 [CrossRef]
    [Google Scholar]
  17. Karlsson S., Lindberg A., Norin E., Burman L. G., Akerlund T. 2000; Toxins, butyric acid, and other short-chain fatty acids are coordinately expressed and down-regulated by cysteine in Clostridium difficile . Infect Immun 68:5881–5888 [CrossRef]
    [Google Scholar]
  18. Karlsson S., Dupuy B., Mukherjee K., Norin E., Burman L. G., Akerlund T. 2003; Expression of Clostridium difficile toxins A and B and their sigma factor TcdD is controlled by temperature. Infect Immun 71:1784–1793 [CrossRef]
    [Google Scholar]
  19. Kyne L., Warny M., Qamar A., Kelly C. P. 2000; Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med 342:390–397 [CrossRef]
    [Google Scholar]
  20. Kyne L., Warny M., Qamar A., Kelly C. P. 2001; Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet 357:189–193 [CrossRef]
    [Google Scholar]
  21. Lyerly D. M., Krivan H. C., Wilkins T. D. 1988; Clostridium difficile : its disease and toxins. Clin Microbiol Rev 1:1–18
    [Google Scholar]
  22. MacCannell D. R., Louie T. J., Gregson D. B., Laverdiere M., Labbe A.-C., Laing F., Henwick S. 2006; Molecular analysis of Clostridium difficile PCR ribotype 027 isolates from Eastern and Western Canada. J Clin Microbiol 44:2147–2152 [CrossRef]
    [Google Scholar]
  23. Mahe S., Corthier G., Dubos F. 1987; Effect of various diets on toxin production by two strains of Clostridium difficile in gnotobiotic mice. Infect Immun 55:1801–1805
    [Google Scholar]
  24. Mani N., Dupuy B. 2001; Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci U S A 98:5844–5849 [CrossRef]
    [Google Scholar]
  25. Mani N., Lyras D., Barroso L., Howarth P., Wilkins T., Rood J. I., Sonenshein A. L., Dupuy B. 2002; Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression. J Bacteriol 184:5971–5978 [CrossRef]
    [Google Scholar]
  26. Matamouros S., England P., Dupuy B. 2007; Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol 64:1274–1288 [CrossRef]
    [Google Scholar]
  27. McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr, Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N. 2005; An epidemic, toxin gene-variant strain of Clostridium difficile . N Engl J Med 353:2433–2441 [CrossRef]
    [Google Scholar]
  28. McFarland L. V., Elmer G. W., Stamm W. E., Mulligan M. E. 1991; Correlation of immunoblot type, enterotoxin production, and cytotoxin production with clinical manifestations of Clostridium difficile infection in a cohort of hospitalized patients. Infect Immun 59:2456–2462
    [Google Scholar]
  29. Minakhin L., Severinov K. 2005; Transcription regulation by bacteriophage T4 AsiA. Protein Expr Purif 41:1–8 [CrossRef]
    [Google Scholar]
  30. Moncrief J. S., Barroso L. A., Wilkins T. D. 1997; Positive regulation of Clostridium difficile toxins. Infect Immun 65:1105–1108
    [Google Scholar]
  31. Nakamura S., Mikawa M., Tanabe N., Yamakawa K., Nishida S. 1982; Effect of clindamycin on cytotoxin production by Clostridium difficile . Microbiol Immunol 26:985–992 [CrossRef]
    [Google Scholar]
  32. Onderdonk A. B., Lowe B. R., Bartlett J. G. 1979; Effect of environmental stress on Clostridium difficile toxin levels during continuous cultivation. Appl Environ Microbiol 38:637–641
    [Google Scholar]
  33. Pepin J., Valiquette L., Cossette B. 2005; Mortality attributable to nosocomial Clostridium difficile -associated disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ 173:1037–1042 [CrossRef]
    [Google Scholar]
  34. Raffestin S., Dupuy B., Marvaud J. C., Popoff M. R. 2005; BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani . Mol Microbiol 55:235–249
    [Google Scholar]
  35. Slack F. J., Serror P., Joyce E., Sonenshein A. L. 1995; A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol Microbiol 15:689–702
    [Google Scholar]
  36. Spigaglia P., Mastrantonio P. 2002; Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40:3470–3475 [CrossRef]
    [Google Scholar]
  37. Tan K. S., Wee B. Y., Song K. P. 2001; Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile . J Med Microbiol 50:613–619
    [Google Scholar]
  38. von Eichel-Streiber C., Laufenberg-Feldmann R., Sartingen S., Schulze J., Sauerborn M. 1992; Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet 233:260–268 [CrossRef]
    [Google Scholar]
  39. Ward P. B., Young G. P. 1997; Dynamics of Clostridium difficile infection. Control using diet. Adv Exp Med Biol 412:63–75
    [Google Scholar]
  40. Warny M., Vaerman J. P., Avesani V., Delmee M. 1994; Human antibody response to Clostridium difficile toxin A in relation to clinical course of infection. Infect Immun 62:384–389
    [Google Scholar]
  41. Warny M., Pepin J., Fang A., Killgore G., Thompson A., Brazier J., Frost E., McDonald L. C. 2005; Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:1079–1084 [CrossRef]
    [Google Scholar]
  42. Wren B., Heard S. R., Tabaqchali S. 1987; Association between production of toxins A and B and types of Clostridium difficile . J Clin Pathol 40:1397–1401 [CrossRef]
    [Google Scholar]
  43. Yamakawa K., Karasawa T., Ikoma S., Nakamura S. 1996; Enhancement of Clostridium difficile toxin production in biotin-limited conditions. J Med Microbiol 44:111–114 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47775-0
Loading
/content/journal/jmm/10.1099/jmm.0.47775-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error