1887

Abstract

SUMMARY

Osmotic protection by the addition of sodium chloride to the level of 750 m.osmoles per kg was required to support an adequate growth of penicillininduced L-forms of on a serum agar medium. This requirement was not reduced by the addition of spermine or by the acidification of the medium.

L-form preparations that gave typical L-form colonies on serum agar containing 0.5-NaCl without added penicillin, but no colonies on isotonic serum agar, were tested for the ability to survive in the serum and tissues of mice. The L-forms were rapidly killed when incubated in mouse serum unprotected by the addition of NaCl, and disappeared rapidly after being injected into the bloodstream or peritoneal cavity. Osmotic lysis was probably the cause of their death and disappearance, since the mouse serum did not contain antibodies capable of killing the L-forms, and treatment with cortisone, which inhibits phagocytosis, did not affect the rate of their clearance from the peritoneum. Although the L-forms slowly underwent lysis in mouse urine, ones that were injected into the urinary bladder were probably also removed to a large extent by the voiding of the urine.

The findings show that L-forms were not virulent in mice.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-3-2-209
1970-05-01
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/jmm/3/2/medmicro-3-2-209.html?itemId=/content/journal/jmm/10.1099/00222615-3-2-209&mimeType=html&fmt=ahah

References

  1. Cohn Z. A. 1962 Yale J. Biol. Med 35:29
    [Google Scholar]
  2. Gnarpe H., Edebo L. 1967 Acta path, microbiol. scand Suppl. 187, p 33
    [Google Scholar]
  3. Godzeski C. W., Brier G., Farran J. D. 1967 Ann. N,. Y. Acad. Sci 143:760
    [Google Scholar]
  4. Gooder H. 1964 Bact. Proc 64:60
    [Google Scholar]
  5. Gooder H. 1968 In Microbial protoplasts, spheroplasts and L-forms ed. by Guze L. B. Baltimore: p 40
    [Google Scholar]
  6. Haller G. J., Lynn R. J. 1968 Ibid p 352
    [Google Scholar]
  7. Hamburger M., Carleton J. 1966 J. Infect. Dis 116:221
    [Google Scholar]
  8. Harold F. M. 1964 J. Bact 88:1416
    [Google Scholar]
  9. Kagan B. M., Molander C. W., Zolla S., Heimlich E. M., Weinberger H. J., Busser R., Lipenieks S. 1963 In Antimicrobial agents and chemotherapy, 1962 ed. by Sylvester J. C. Ann Arbor: p 517
    [Google Scholar]
  10. Kalmanson G. M., Hubert E. G., Montgomerie J. Z., Guze L. B. 1966 In Antimicrobial agents and chemotherapy, 1965 ed. by Hobby Gladys L. Ann Arbor: p 304
    [Google Scholar]
  11. King J. R., Gooder H. 1965 Bact. Proc 65:58
    [Google Scholar]
  12. Klieneberger Emmy. 1938 J. Hyg., Camb 38:458
    [Google Scholar]
  13. Louria D. B., Hensle T., Armstrong D., Collins H. S., Blevins Anne, Krugman D., Buse Marga. 1967 Ann. Intern. Med 67:261
    [Google Scholar]
  14. Mitchell P., Moyle Jennifer. 1956 Symp. Soc. Gen. Microbiol 6:150
    [Google Scholar]
  15. Pierce Cynthia H., Dubos R. J., Schaefer W. B. 1953 J. Exp. Med 97:189
    [Google Scholar]
  16. Pratt B. C. 1965 Ph.D. Thesis, Univ London:
  17. Prozorovskii S. V. 1959 J. Microbiol. Epidem. Immunobiol 30:352
    [Google Scholar]
  18. Rosenthal S. M., Tabor C. W. 1956 J. Pharmac. Exp. Ther 116:131
    [Google Scholar]
  19. Schmitt-Slomska J., Sacquet E., Caravano R. 1967 J. Bact 93:451
    [Google Scholar]
  20. Silberstein J. K. 1953 Schweiz. Z. allg. Path. Bact 16:739
    [Google Scholar]
  21. Silverstein E. 1961 J. Appl. Physiol 16:194
    [Google Scholar]
  22. Watt P. J. 1969 M.D. Thesis, Univ London:
  23. Young R. M., Dahlquist E. H. 1967 Amer. J. Clin. Path 48:466
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-3-2-209
Loading
/content/journal/jmm/10.1099/00222615-3-2-209
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error