1887

Abstract

Alteration in the composition of the gut microbiota can lead to a number of chronic clinical diseases. is an anaerobic bacteria constituting 3–5% of the gut microbial community in healthy adults. This bacterium is responsible for degenerating mucin in the gut; its scarcity leads to diverse clinical disorders. In this review, we focus on the role of in diabetes, obesity and atherosclerosis, as well as the use of this bacterium as a next-generation probiotic. In regard to obesity and diabetes, human and animal trials have shown that controls the essential regulatory system of glucose and energy metabolism. However, the underlying mechanisms by which alleviates the complications of obesity, diabetes and atherosclerosis are unclear. At the same time, its abundance suggests improved metabolic disorders, such as metabolic endotoxemia, adiposity insulin resistance and glucose tolerance. The role of is implicated in declining aortic lesions and atherosclerosis. Well-characterized virulence factors, antigens and cell wall extracts of may act as effector molecules in these diseases. These molecules may provide novel mechanisms and strategies by which this bacterium could be used as a probiotic for the treatment of obesity, diabetes and atherosclerosis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001435
2021-10-08
2024-04-27
Loading full text...

Full text loading...

References

  1. Canny GO, McCormick BA. Bacteria in the intestine, helpful residents or enemies from within?. Infect Immun 2008; 76:3360–3373 [View Article] [PubMed]
    [Google Scholar]
  2. Van Passel MW, Kant R, Zoetendal EG, Plugge CM, Derrien M. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS One 2011; 6:e16876 [View Article] [PubMed]
    [Google Scholar]
  3. Belzer C, De Vos WM. Microbes inside—from diversity to function: the case of Akkermansia. ISME J 2012; 6:1449–1458 [View Article] [PubMed]
    [Google Scholar]
  4. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004; 54:1469–1476 [View Article] [PubMed]
    [Google Scholar]
  5. Naito Y, Uchiyama K, Takagi T. A next-generation beneficial microbe: Akkermansia muciniphila. J Clin Biochem Nutr 2018; 63:33–35 [View Article] [PubMed]
    [Google Scholar]
  6. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol 2011; 77:6718–6721 [View Article] [PubMed]
    [Google Scholar]
  7. Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 2008; 88:894–899 [View Article] [PubMed]
    [Google Scholar]
  8. Collado MC, Derrien M, Isolauri E, de Vos WM, Salminen S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 2007; 73:7767–7770 [View Article] [PubMed]
    [Google Scholar]
  9. Remely M, Hippe B, Geretschlaeger I, Stegmayer S, Hoefinger I. Increased gut microbiota diversity and abundance of Faecalibacterium prausnitzii and Akkermansia after fasting: a pilot study. Wien Klin Wochenschr 2015; 127:394–398 [View Article] [PubMed]
    [Google Scholar]
  10. Seregin SS, Golovchenko N, Schaf B, Chen J, Pudlo NA. NLRP6 protects Il10−/− mice from colitis by limiting colonization of Akkermansia muciniphila. Cell Rep 2017; 19:733–745S2211-1247(17)30457-6 [View Article] [PubMed]
    [Google Scholar]
  11. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 2016; 65:426–436 [View Article] [PubMed]
    [Google Scholar]
  12. Ganesh BP, Klopfleisch R, Loh G, Blaut M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS One 2013; 8:e74963 [View Article] [PubMed]
    [Google Scholar]
  13. Xu Y, Wang N, Tan H-Y, Li S, Zhang C et al. Function of Akkermansia muciniphila in obesity: interactions with lipid metabolism, immune response and gut systems. Front Microbiol 2020; 11:219
    [Google Scholar]
  14. Abuqwider JN, Mauriello G, Altamimi M. Akkermansia muciniphila, a new generation of beneficial microbiota in modulating obesity: a systematic review. Microorganisms 2021; 9:1098 [View Article] [PubMed]
    [Google Scholar]
  15. Mello LV, Chen X, Rigden DJ. Mining metagenomic data for novel domains: BACON, a new carbohydrate-binding module. FEBS Lett 2010; 584:2421–2426 [View Article] [PubMed]
    [Google Scholar]
  16. Suau A, Bonnet R, Sutren M, Godon J-J, Gibson GR. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 1999; 65:4799–4807 [View Article] [PubMed]
    [Google Scholar]
  17. Van der Oost J, Jore MM, Westra ER, Lundgren M, Brouns SJ. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 2009; 34:401–407 [View Article] [PubMed]
    [Google Scholar]
  18. Gholizadeh P, Aghazadeh M, Asgharzadeh M, Samadi Kafil H. Suppressing the CRISPR/CAS adaptive immune system in bacterial infections. Eur J Clin Microbiol Infect Dis 20171–9
    [Google Scholar]
  19. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A. A core gut microbiome in obese and lean twins. Nature 2009; 457:480–484 [View Article] [PubMed]
    [Google Scholar]
  20. Guo X, Li S, Zhang J, Wu F, Li X et al. Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diverisity, and global distribution in mammalian gut microbiotas. BMC Genomics 2017; 18:1–12
    [Google Scholar]
  21. Johansson ME, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc Natl Acad Sci 2011; 108:4659–4665 [View Article]
    [Google Scholar]
  22. Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 2011; 9:356–368 [View Article] [PubMed]
    [Google Scholar]
  23. Pott J, Hornef M. Innate immune signalling at the intestinal epithelium in homeostasis and disease. EMBO Rep 2012; 13:684–698 [View Article] [PubMed]
    [Google Scholar]
  24. Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 2010; 10:159–169 [View Article] [PubMed]
    [Google Scholar]
  25. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 2014; 146:1489–1499S0016-5085(14)00220-0 [View Article] [PubMed]
    [Google Scholar]
  26. Koboziev I, Webb CR, Furr KL, Grisham MB. Role of the enteric microbiota in intestinal homeostasis and inflammation. Free Radic Biol Med 2014; 68:122–133S0891-5849(13)01497-4 [View Article] [PubMed]
    [Google Scholar]
  27. Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol 2011; 12:5–9 [View Article] [PubMed]
    [Google Scholar]
  28. Xu W, Yang W, Wang Y, Wang M, Zhang M. Structural and biochemical analyses of β-N-acetylhexosaminidase Am0868 from Akkermansia muciniphila involved in mucin degradation. Biochem Biophys Res Commun 2020; 529:876–881S0006-291X(20)31334-6 [View Article] [PubMed]
    [Google Scholar]
  29. Kosciow K, Deppenmeier U. Characterization of three novel β-galactosidases from Akkermansia muciniphila involved in mucin degradation. Int J Biol Macromol 2020; 149:331–340S0141-8130(19)40011-1 [View Article] [PubMed]
    [Google Scholar]
  30. Kosciow K, Deppenmeier U. Characterization of a phospholipid-regulated β-galactosidase from Akkermansia muciniphila involved in mucin degradation. MicrobiologyOpen 2019; 8:e00796 [View Article] [PubMed]
    [Google Scholar]
  31. Qin J, Li Y, Cai Z, Li S, Zhu J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490:55–60 [View Article] [PubMed]
    [Google Scholar]
  32. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ et al. Gut metagenome in european women with normal, impaired and diabetic glucose control. Nature 2013; 498:99–10399 [View Article] [PubMed]
    [Google Scholar]
  33. Khan MT, Nieuwdorp M, Bäckhed F. Microbial modulation of insulin sensitivity. Cell Metab 2014; 20:753–760S1550-4131(14)00314-3 [View Article] [PubMed]
    [Google Scholar]
  34. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 2015gutjnl–2014
    [Google Scholar]
  35. Zheng H, Liang H, Wang Y, Miao M, Shi T et al. Altered gut microbiota composition associated with eczema in infants. PLoS One 2016; 11:e0166026
    [Google Scholar]
  36. Zhang L, Wang Y, Xiayu X, Shi C, Chen W. Altered gut microbiota in a mouse model of Alzheimer’s disease. J Alzheimers Dis 2017; 60:1241–1257 [View Article] [PubMed]
    [Google Scholar]
  37. Zatterale F, Longo M, Naderi J, Raciti GA, Desiderio A. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol 2020; 10:1607 [View Article] [PubMed]
    [Google Scholar]
  38. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56:1761–1772 [View Article] [PubMed]
    [Google Scholar]
  39. Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives. Curr Obes Rep 2019; 8:317–332 [View Article] [PubMed]
    [Google Scholar]
  40. Gholizadeh P, Mahallei M, Pormohammad A, Varshochi M, Ganbarov K. Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease. Microb Pathog 2019; 127:48–55S0882-4010(18)31695-4 [View Article] [PubMed]
    [Google Scholar]
  41. Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM et al. Endocannabinoids--at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol 2016; 12:133–143 [View Article] [PubMed]
    [Google Scholar]
  42. Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol 2013; 27:73–83 [View Article]
    [Google Scholar]
  43. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GG. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 2011; 60:2775–2786 [View Article] [PubMed]
    [Google Scholar]
  44. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444:1027–1131 [View Article] [PubMed]
    [Google Scholar]
  45. Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut microbes 2012; 3:279–288 [View Article] [PubMed]
    [Google Scholar]
  46. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57:1470–1481 [View Article] [PubMed]
    [Google Scholar]
  47. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58:1091–1103 [View Article] [PubMed]
    [Google Scholar]
  48. Muccioli GG, Naslain D, Bäckhed F, Reigstad CS, Lambert DM. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol 2010; 6:392 [View Article] [PubMed]
    [Google Scholar]
  49. Lee H, Ko G, Griffiths MW. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol 2014; 80:5935–5943 [View Article] [PubMed]
    [Google Scholar]
  50. Shin N-R, Lee J-C, Lee H-Y, Kim M-S, Whon TW et al. An increase in the Akkermansia spp. Population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014; 63:727–735 [View Article] [PubMed]
    [Google Scholar]
  51. Zhou Z-Y, Ren L-W, Zhan P, Yang H-Y, Chai D-D et al. Metformin exerts glucose-lowering action in high-fat fed mice via attenuating endotoxemia and enhancing insulin signaling. Acta Pharmacol Sin 2016; 37:1063–1075 [View Article] [PubMed]
    [Google Scholar]
  52. Lee H, Lee Y, Kim J, An J, Lee S. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes 2018; 9:155–165 [View Article] [PubMed]
    [Google Scholar]
  53. Shin N-R, Lee J-C, Lee H-Y, Kim M-S, Whon TW. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014; 63:727–735 [View Article] [PubMed]
    [Google Scholar]
  54. Van den Abbeele P, Gérard P, Rabot S, Bruneau A, El Aidy S. Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin‐degradation in humanized rats. Environ Microbiol 2011; 13:2667–2680 [View Article] [PubMed]
    [Google Scholar]
  55. Artis D, Wang ML, Keilbaugh SA, He W, Brenes M. RELMβ/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc Natl Acad Sci U S A 2004; 101:13596–13600 [View Article] [PubMed]
    [Google Scholar]
  56. Suemori S, Lynch-Devaney K, Podolsky D. Identification and characterization of rat intestinal trefoil factor: tissue-and cell-specific member of the trefoil protein family. Proceed National Acad Sci 1991; 88:11017–11021 [View Article]
    [Google Scholar]
  57. Schneeberger M, Everard A, Gomez-Valades AG, Matamoros S, Ramirez S. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep 2015; 5:16643 [View Article] [PubMed]
    [Google Scholar]
  58. De La Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid–producing microbiota in the gut. Diabetes Care 2017; 40:54–62 [View Article] [PubMed]
    [Google Scholar]
  59. Zhai Q, Feng S, Arjan N, Chen W. A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr 2019; 59:3227–3236 [View Article] [PubMed]
    [Google Scholar]
  60. Ang Z, Ding JL. GPR41 and GPR43 in obesity and inflammation–protective or causative?. Front Immunol 2016; 7:28 [View Article] [PubMed]
    [Google Scholar]
  61. Allin KH, Tremaroli V, Caesar R, Jensen BA, Damgaard MT. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 2018; 61:810–820 [View Article] [PubMed]
    [Google Scholar]
  62. Li W-Z, Stirling K, Yang J-J, Zhang L. Gut microbiota and diabetes: From correlation to causality and mechanism. World J Diabetes 2020; 11:293
    [Google Scholar]
  63. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498:99–103 [View Article] [PubMed]
    [Google Scholar]
  64. Zhang X, Shen D, Fang Z, Jie Z, Qiu X et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 2013; 8:e71108
    [Google Scholar]
  65. Yan H, Potu R, Lu H, Almeida V de, Stewart T et al. Dietary fat content and fiber type modulate hind gut microbial community and metabolic markers in the pig. PLoS One 2013; 8:e59581
    [Google Scholar]
  66. Davis LM, Martínez I, Walter J, Goin C, Hutkins RW. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS One 2011; 6:e25200 [View Article] [PubMed]
    [Google Scholar]
  67. Lee H, Ko G. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol 2014; 80:5935–5943 [View Article] [PubMed]
    [Google Scholar]
  68. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015; 528:262–266 [View Article] [PubMed]
    [Google Scholar]
  69. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci 2013; 110:9066–9071 [View Article]
    [Google Scholar]
  70. Plovier H, Everard A, Druart C, Depommier C, Van Hul M. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 2017; 23:107–113 [View Article] [PubMed]
    [Google Scholar]
  71. Shen J, Tong X, Sud N, Khound R, Song Y. Low-density lipoprotein receptor signaling mediates the triglyceride-lowering action of Akkermansia muciniphila in genetic-induced hyperlipidemia. Arterioscler Thromb Vasc Biol 2016; 36:1448–1456 [View Article] [PubMed]
    [Google Scholar]
  72. Cario E, Gerken G, Podolsky D. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 2007; 132:1359–1374 [View Article] [PubMed]
    [Google Scholar]
  73. MJ G, Song SK, Lee IK, Ko S, Han SE et al. Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol. Vet Res 2016; 47:1–11
    [Google Scholar]
  74. Li J, Lin S, Vanhoutte PM, Woo CW, Xu A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe-/-mice. Circulation 2016; CIRCULATIONAHA. 115.019645:
    [Google Scholar]
  75. Bian X, Wu W, Yang L, Lv L, Wang Q et al. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front Microbiol 2019; 10:2259 [View Article]
    [Google Scholar]
  76. Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 2014; 157:1292–1308S0092-8674(14)00601-1 [View Article] [PubMed]
    [Google Scholar]
  77. Rao RR, Long JZ, White JP, Svensson KJ, Lou J. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 2014; 157:1279–1291S0092-8674(14)00600-X [View Article] [PubMed]
    [Google Scholar]
  78. Geurts L, Everard A, Van Hul M, Essaghir A, Duparc T et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun 2015; 6:1–15 [View Article]
    [Google Scholar]
  79. Chelakkot C, Choi Y, Kim D-K, Park HT, Ghim J et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med 2018; 50:e450 [View Article] [PubMed]
    [Google Scholar]
  80. Cuesta CM, Guerri C, Ureña J, Pascual M. Role of microbiota-derived extracellular vesicles in gut-brain communication. Int J Mol Sci 2021; 22:4235 [View Article] [PubMed]
    [Google Scholar]
  81. Hansen KB, Rosenkilde MM, Knop FK, Wellner N, Diep TA et al. 2-Oleoyl glycerol is a GPR119 agonist and signals GLP-1 release in humans. J Clin Endocrinol Metab 2011; 96:E1409–E1417
    [Google Scholar]
  82. Cani PD, de Vos WM. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol 2017; 8:1765 [View Article] [PubMed]
    [Google Scholar]
  83. Grander C, Adolph TE, Wieser V, Lowe P, Wrzosek L. Recovery of ethanol-induced Akkermansia muciniphila depletion ameliorates alcoholic liver disease. Gut 2018; 67:891–901 [View Article] [PubMed]
    [Google Scholar]
  84. Li J, Zhao F, Wang Y, Chen J, Tao J et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017; 5:1–19
    [Google Scholar]
  85. Guzik T, Mangalat D, Korbut R. Adipocytokines novel link between inflammation. J Physiol Pharmacol 2006; 4:505–528
    [Google Scholar]
  86. Piya MK, McTernan PG, Kumar S. Adipokine inflammation and insulin resistance: the role of glucose, lipids and endotoxin. J Endocrinol 2013; 216:T1–T15 [View Article] [PubMed]
    [Google Scholar]
  87. Jung UJ, Choi M-S. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 2014; 15:6184–6223 [View Article] [PubMed]
    [Google Scholar]
  88. Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest 2019; 129:3990–4000129187 [View Article] [PubMed]
    [Google Scholar]
  89. Cani PD, Neyrinck A, Fava F, Knauf C, Burcelin R. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007; 50:2374–2383 [View Article] [PubMed]
    [Google Scholar]
  90. Schneeberger M, Everard A, Gómez-Valadés AG, Matamoros S, Ramírez S et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep 2015; 5:1–14 [View Article]
    [Google Scholar]
  91. Sonoyama K, Fujiwara R, Takemura N, Ogasawara T, Watanabe J. Response of gut microbiota to fasting and hibernation in Syrian hamsters. Appl Environ Microbiol 2009; 75:6451–6456 [View Article] [PubMed]
    [Google Scholar]
  92. Briggs DI, Enriori PJ, Lemus MB, Cowley MA, Andrews ZB. Diet-induced obesity causes ghrelin resistance in arcuate NPY/AgRP neurons. Endocrinology 2010; 151:4745–4755 [View Article] [PubMed]
    [Google Scholar]
  93. Kyriachenko Y, Falalyeyeva T, Korotkyi O, Molochek N, Kobyliak N. Crosstalk between gut microbiota and antidiabetic drug action. World J Diabetes 2019; 10:154–168154 [View Article] [PubMed]
    [Google Scholar]
  94. Van Hul M, Le Roy T, Prifti E, Dao MC, Paquot A. From correlation to causality: the case of Subdoligranulum. Gut Microbes 2020; 12:1–13 [View Article] [PubMed]
    [Google Scholar]
  95. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105:1135–1143 [View Article] [PubMed]
    [Google Scholar]
  96. Kasahara K, Tanoue T, Yamashita T, Yodoi K, Matsumoto T. Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis. J Lipid Res 2017; 58:519–528 [View Article] [PubMed]
    [Google Scholar]
  97. Santacruz A, Collado MC, Garcia-Valdes L, Segura M, Martin-Lagos J. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr 2010; 104:83–92 [View Article] [PubMed]
    [Google Scholar]
  98. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009; 9:799–809799 [View Article] [PubMed]
    [Google Scholar]
  99. Stoll LL, Denning GM, Weintraub NL. Potential role of endotoxin as a proinflammatory mediator of atherosclerosis. Arterioscler Thromb Vasc Biol 2004; 24:2227–2236 [View Article] [PubMed]
    [Google Scholar]
  100. Schäffler A, Schölmerich J. Innate immunity and adipose tissue biology. Trends Immunol 2010; 31:228–235 [View Article] [PubMed]
    [Google Scholar]
  101. Sallam T, Ito A, Rong X, Kim J, van Stijn C. The macrophage LBP gene is an LXR target that promotes macrophage survival and atherosclerosis. J Lipid Res 2014; 55:1120–1130 [View Article] [PubMed]
    [Google Scholar]
  102. Curtiss LK, Tobias PS. Emerging role of Toll-like receptors in atherosclerosis. J Lipid Res 2009; 50:S340–S345 [View Article]
    [Google Scholar]
  103. Derrien M, Van Baarlen P, Hooiveld G, Norin E, Müller M et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol 2011; 2: [View Article]
    [Google Scholar]
  104. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334:255–258 [View Article] [PubMed]
    [Google Scholar]
  105. Funderburgh JL. MINI REVIEW Keratan sulfate: structure, biosynthesis, and function. Glycobiology 2000; 10:951–958 [View Article] [PubMed]
    [Google Scholar]
  106. Derrien M, van Passel MW, van de Bovenkamp JH, Schipper R, de Vos W. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut microbes 2010; 1:254–268 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001435
Loading
/content/journal/jmm/10.1099/jmm.0.001435
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error