1887

Abstract

Between July 1994 and March 1995, 64 isolates of were implicated in bacteraemia in 25 cancer patients in five wards of two hospitals. These, together with 24 environmental isolates and one isolate from a bacteraemia in a non-cancer patient were examined by three PCR-based DNA fingerprinting methods: random amplified polymorphic DNA (RAPD), enterobacterial-repetitive intergenic consensus (ERIC)-PCR, and 16S-23S spacer region-based RAPD. These methods were reproducible, discriminatory and showed close agreement; all indicated that 47 isolates that had caused bacteraemia in 19 cancer patients were indistinguishable. Seventeen other isolates that had caused bacteraemia in 10 cancer patients were discriminated into eight further groups, and the 24 environmental and non-cancer patient isolates into further distinct groups. No environmental source of the epidemic strain was found, but it was suspected that the outbreak was related to infusion implants.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-45-5-359
1996-11-01
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/jmm/45/5/medmicro-45-5-359.html?itemId=/content/journal/jmm/10.1099/00222615-45-5-359&mimeType=html&fmt=ahah

References

  1. Rolston K. V., Bodey G. P. Pseudomonas aeruginosa infection in cancer patients. Cancer Invest 1992; 10:43–59
    [Google Scholar]
  2. Miller P. J., Wenzel R. P. Etiologic organisms as independent predictors of death and morbidity associated with bloodstream infections. J Infect Dis 1987; 156:471–477
    [Google Scholar]
  3. Richard P., Le Floch R., Chamoux C., Pannier M., Espaze E., Richet H. Pseudomonas aeruginosa outbreak in a bum unit: role of antimicrobials in the emergence of multiply resistant strains. J Infect Dis 1994; 170:377–383
    [Google Scholar]
  4. Fegan M., Francis P., Hayward A. C., Fuerst J. A. Heterogeneity, persistence, and distribution of Pseudomonas aeruginosa genotypes in cystic fibrosis patients. J Clin Microbiol 1991; 29:2151–2157
    [Google Scholar]
  5. Grundmann H., Schneider C., Hartung D., Daschner F. D., Pitt T. L. Discriminatory power of three DNA-based typing techniques for Pseudomonas aeruginosa. J Clin Microbiol 1995; 33:528–534
    [Google Scholar]
  6. Speert D. P., Campbell M. E., Farmer S. W., Volpel K., Joffe A. M., Paranchych W. Use of a pilin gene probe to study molecular epidemiology of Pseudomonas aeruginosa. J Clin Microbiol 1989; 27:2589–2593
    [Google Scholar]
  7. Martin C., Ait Ichou M., Massicot P., Goudeau A., Quentin R. Genetic diversity of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis revealed by Restriction Fragment Length Polymorphism of the rRNA gene region. J Clin Microbiol 1995; 33:1461–1466
    [Google Scholar]
  8. Poh C. L., Yeo C. C., Tay L. Genome fingerprinting by pulsed-field gel electrophoresis and ribotyping to differentiate Pseudomonas aeruginosa serotype O11 strains. Eur J Clin Microbiol Infect Dis 1992; 11:817–822
    [Google Scholar]
  9. Stmelens M. J., Schwam V., Deplano A., Baran D. Genome macrorestriction analysis of diversity and variability of Pseudomonas aeruginosa strains infecting cystic fibrosis patients. J Clin Microbiol 1993; 31:2320–2326
    [Google Scholar]
  10. Kersulyte D., Struelens M. J., Deplano A., Berg D. E. Comparison of Arbitrarily Primed PCR and Macrorestriction (Pulsed-Field Gel Electrophoresis) typing of Pseudomonas aeruginosa strains from cystic fibrosis patients. J Clin Microbiol 1995; 33:2216–2219
    [Google Scholar]
  11. Grothues D., Koopmann U., von der Hardt H., Tümmler B. Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J Clin Microbiol 1988; 26:1973–1977
    [Google Scholar]
  12. Boukadida J., de Montalembert M., Gaillard J. L. Outbreak of gut colonization by Pseudomonas aeruginosa in immunocompromised children undergoing total digestive decontamination: analysis by pulsed-field electrophoresis. J Clin Microbiol 1991; 29:2068–2071
    [Google Scholar]
  13. Maher W. E., Kobe M., Fass R. J. Restriction endonuclease analysis of clinical Pseudomonas aeruginosa strains: useful epidemiologic data from a simple and rapid method. J Clin Microbiol 1993; 31:1426–1429
    [Google Scholar]
  14. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 1990; 18:6531–6535
    [Google Scholar]
  15. van Belkum A. DNA fingerprinting of medically important microorganisms by use of PCR. Clin Microbiol Rev 1994; 7:174–184
    [Google Scholar]
  16. Elaichouni A., Verschraegen G., Claeys G., Devleeschouwer M., Godard C., Vanneechoutte M. Pseudomonas aeruginosa serotype 012 outbreak studied by arbitrary primer PCR. J Clin Microbiol 1994; 32:666–671
    [Google Scholar]
  17. Kerr J. R., Moore J. E., Curran M. D. Investigation of a nosocomial outbreak of Pseudomonas aeruginosa pneumonia in an intensive care unit by random amplification of polymorphic DNA assay. J Hosp Infect 1995; 30:125–131
    [Google Scholar]
  18. Versalovic J., Koeuth T., Lupski J. R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 1991; 19:6823–6831
    [Google Scholar]
  19. Louws F. J., Fulbright D. W., Stephens C. T., de Bruijn F. J. Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 1994; 60:2286–2295
    [Google Scholar]
  20. Jensen M. A., Webster J. A., Straus N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 1993; 59:945–952
    [Google Scholar]
  21. Abed Y., Davin-Regli A., Bollet C., de Micco P. Efficient discrimination of Mycobacterium tuberculosis strains by 16S-23 S spacer region-based random amplified polymorphic DNA analysis. J Clin Microbiol 1995; 33:1418–1420
    [Google Scholar]
  22. Pitt T. L. A comparison of flagellar typing and phage typing as means of subdividing the O groups of Pseudomonas aeruginosa. J Med Microbiol 1981; 14:261–270
    [Google Scholar]
  23. De Lamballerie X., Zandotti C., Vignoli C., Bollet C., De Micco P. A one-step microbial DNA extraction method using ‘Chelex 100’ suitable for gene amplification. Res Microbiol 1992; 143:785–790
    [Google Scholar]
  24. Reboli A. C., Houston E. D., Monteforte J. S., Wood C. A., Hamill R. J. Discrimination of epidemic and sporadic isolates of Acineto-bacter baumannii by repetitive element PCR-mediated DNA fingerprinting. J Clin Microbiol 1994; 32:2635–2640
    [Google Scholar]
  25. Woods C. R. J., Koeuth T., Lupski J. R. Analysis of relationships among isolates of Citrobacter diversus by using DNA fingerprints generated by repetitive sequence-based primers in the polymerase chain reaction. J Clin Microbiol 1992; 30:2921–2929
    [Google Scholar]
  26. Abed Y., Davin A., Charrel R. N., Bollet C., De Micco P. Variation of RAPD-fingerprint patterns using different DNA-extraction methods with Gram-positive bacteria. World J Microbiol Biotechnol 1995; 11:238–239
    [Google Scholar]
  27. Davin-Regli A., Abed Y., Charrel R. N., Bollet C., De Micco P. Variations in DNA concentrations significantly affect the reproducibility of RAPD fingerprint patterns. Res Microbiol 1995; 146:561–568
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-45-5-359
Loading
/content/journal/jmm/10.1099/00222615-45-5-359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error