
f Probiotic attributes, antioxidant, anti-inflammatory and neuromodulatory effects of Enterococcus faecium CFR 3003: in vitro and in vivo evidence
- Authors: G. Divyashri1 ,2 , G. Krishna3 , Muralidhara3 , S. G. Prapulla2
-
- VIEW AFFILIATIONS
-
1 1 Academy of Scientific and Innovative Research (AcSIR), New Delhi, India 2 2 Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute (CFTRI), Karnataka, Mysore 570 020, India 3 3 Biochemistry and Nutrition Department, CSIR-Central Food Technological Research Institute (CFTRI), Karnataka, Mysore 570 020, India
- Correspondence S. G. Prapulla [email protected]
- First Published Online: 01 December 2015, Journal of Medical Microbiology 64: 1527-1540, doi: 10.1099/jmm.0.000184
- Subject: Prevention and Therapy
- Received:
- Accepted:
- Cover date:




Probiotic attributes, antioxidant, anti-inflammatory and neuromodulatory effects of Enterococcus faecium CFR 3003: in vitro and in vivo evidence, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/jmm/64/12/1527_jmm000184-1.gif
-
Accumulating evidence suggests that probiotic bacteria play a vital role in modulating various aspects integral to the health and well-being of humans. In the present study, probiotic attributes and the antioxidant, anti-inflammatory and neuromodulatory potential of Enterococcus faecium CFR 3003 were investigated by employing suitable model systems. E. faecium exhibited robust resistance to gastrointestinal stress conditions as it could withstand acid stress at pH 1.5, 2 and 3. The bacterium also survived at a bile salt concentration of 0.45 %, and better tolerance was observed towards pepsin and trypsin. E. faecium produced lactic acid as a major metabolic product, followed by butyric acid. Lyophilized cell-free supernatant (LCS) of E. faecium exhibited significant antioxidant capacity evaluated against 1,1-diphenyl-2-picryl-hydrazyl, ascorbate auto-oxidation, oxygen radical absorbance and reducing power. Interestingly, E. faecium, Lactobacillus rhamnosus GG MTCC 1408 and LCS showed a significant anti-inflammatory effect by negatively modulating TNF-α production and upregulating IL-10 levels in LPS-stimulated macrophage cell lines. In an in vivo mice model, the propensity of probiotic supplements to modulate endogenous oxidative markers and redox status in brain regions was assessed. Young mice provided with oral supplements (daily for 28 days) of E. faecium and L. rhamnosus exhibited diminished oxidative markers in the brain and enhanced activities of antioxidant enzymes with a concomitant increase in γ-aminobutyric acid and dopamine levels. Collectively, our findings clearly suggest the propensity of these bacteria to protect against tissue damage mediated through free radicals and inflammatory cytokines. Although the underlying molecular mechanisms need further studies, it is tempting to speculate that probiotics confer a neuroprotective advantage in vivo against oxidative damage-mediated neurodegenerative conditions.
-
Abbreviations: AChE acetylcholine esterase CAT catalase DA dopamine DCF 2′,7′-dichlorofluorescein DPPH 1,1-diphenyl-2-picryl-hydrazyl GABA γ-aminobutyric acid GSH glutathione GST glutathione S-transferase LCS lyophilized cell-free supernatant ORAC oxygen radical absorbance capacity ROS reactive oxygen species TCA trichloroacetic acid TE Trolox equivalent
© 2015 The Authors | Published by the Microbiology Society
-
Afify A.E.M.R. , Romeilah R. M. , Sultan S. I. M. , Hussein M. M. . ( 2012;). Antioxidant activity and biological evaluations of probiotic bacteria strains. Int J Acad Res Part A 4: 131––139.[CrossRef]
-
Ahire J. J. , Mokashe N. U. , Patil H. J. , Chaudhari B. L. . ( 2013;). Antioxidative potential of folate producing probiotic Lactobacillus helveticus CD6. J Food Sci Technol 50: 26––34 [CrossRef] [PubMed].
-
Andersen J. K. . ( 2004;). Oxidative stress in neurodegeneration: cause or consequence?. Nat Med 10: S18––S25 [CrossRef] [PubMed].
-
Araújo T. F. , Ferreira C. . ( 2013;). The genus Enterococcus as probiotic: safety concerns. Braz Arch Biol Technol 56: 457––466 [CrossRef].
-
Balish E. , Warner T. . ( 2002;). Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am J Pathol 160: 2253––2257 [CrossRef] [PubMed].
-
Benyacoub J. , Czarnecki-Maulden G. L. , Cavadini C. , Sauthier T. , Anderson R. E. , Schiffrin E. J. , Weid T. . ( 2003;). Supplementation of food with Enterococcus faecium (SF68) stimulates immune functions in young dogs.. J Nutr 133 1158––1162.
-
Bhardwaj A. , Kapila S. , Mani J. , Malik R. K. . ( 2009;). Comparison of susceptibility to opsonic killing by in vitro human immune response of Enterococcus strains isolated from dairy products, clinical samples and probiotic preparation. Int J Food Microbiol 128: 513––515 [CrossRef] [PubMed].
-
Bravo J. A. , Forsythe P. , Chew M. V. , Escaravage E. , Savignac H. M. , Dinan T. G. , Bienenstock J. , Cryan J. F. . ( 2011;). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108: 16050––16055 [CrossRef] [PubMed].
-
Brestoff J. R. , Artis D. . ( 2013;). Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14: 676––684 [CrossRef] [PubMed].
-
Calabrese V. , Cornelius C. , Dinkova-Kostova A. T. , Iavicoli I. , Di Paola R. , Koverech A. , Cuzzocrea S. , Rizzarelli E. , Calabrese E. J. . ( 2012;). Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta 1822: 753––783 [CrossRef] [PubMed].
-
Cao G. , Prior R. L. . ( 1999;). Measurement of oxygen radical absorbance capacity in biological samples. Methods Enzymol 299: 50––62 [CrossRef] [PubMed].
-
Caradonna L. , Amati L. , Magrone T. , Pellegrino N. M. , Jirillo E. , Caccavo D. . ( 2000;). Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: biological and clinical significance. J Endotoxin Res 6: 205––214 [PubMed].
-
Carasi P. , Díaz M. , Racedo S. M. , de Antoni G. , Urdaci M. C. , de Los M. , Serradell A. . ( 2014;) Safety characterization and antimicrobial properties of kefir-isolated Lactobacillus kefiri . BioMed Res Int 2014: [CrossRef] [PubMed].
-
Chen S. , Fu Y. , Liu L. L. , Gao W. , Liu Y. L. , Fei S. H. , Tan Y. , Zou K. F. . ( 2014;). Live combined Bacillus subtilis and Enterococcus faecium ameliorate murine experimental colitis by immunosuppression. Int J Inflamm 2014: 878054 [CrossRef] [PubMed].
-
Cryan J. F. , Dinan T. G. . ( 2012;). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13: 701––712 [CrossRef] [PubMed].
-
Cummings J. H. , Branch W. J. . ( 1982;). Postulated mechanisms whereby fibre may protect against large bowel cancer. . In Dietary Fiber in Health and Disease, pp. 313––325. Edited by Vahouney G. V. , Kritchevsky D. . New York: Plenum Press; [CrossRef].
-
Dalle-Donne I. , Scaloni A. , Giustarini D. , Cavarra E. , Tell G. , Lungarella G. , Colombo R. , Rossi R. , Milzani A. . ( 2005;). Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. Mass Spectrom Rev 24: 55––99 [CrossRef] [PubMed].
-
Dalpiaz A. , Filosa R. , de Caprariis P. , Conte G. , Bortolotti F. , Biondi C. , Scatturin A. , Prasad P. D. , Pavan B. . ( 2007;). Molecular mechanism involved in the transport of a prodrug dopamine glycosyl conjugate. Int J Pharm 336: 133––139 [CrossRef] [PubMed].
-
Desbonnet L. , Garrett L. , Clarke G. , Bienenstock J. , Dinan T. G. . ( 2008;). The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res 43: 164––174 [CrossRef] [PubMed].
-
Diaz Heijtz R. , Wang S. , Anuar F. , Qian Y. , Björkholm B. , Samuelsson A. , Hibberd M. L. , Forssberg H. , Pettersson S. . ( 2011;). Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108: 3047––3052 [CrossRef] [PubMed].
-
Divyashri G. , Prapulla S. G. . ( 2015a;). An insight into kinetics and thermodynamics of gamma-aminobutyric acid production by Enterococcus faecium CFR 3003 in batch fermentation. Ann Microbiol 65: 1109––1118 [CrossRef].
-
Divyashri G. , Prapulla S. G. . ( 2015b;). Mass transfer characterization of gamma-aminobutyric acid production by Enterococcus faecium CFR 3003: encapsulation improves its survival under simulated gastro-intestinal conditions. Bioprocess Biosyst Eng 38: 569––574 [CrossRef] [PubMed].
-
Dixit G. , Samarth D. , Tale V. , Bhadekar R. . ( 2013;). Comparitive studies on potential probiotic characteristics of Lactobacillus acidophilus strains. EurAsian J BioSci 7: 1––9 [CrossRef].
-
Ellman G. L. , Courtney K. D. , Andres V. Jr , Feather-Stone R. M. . ( 1961;). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88––95 [CrossRef] [PubMed].
-
Flohé L. , Günzler W. A. . ( 1984;). Assays of glutathione peroxidase. Methods Enzymol 105: 114––121 [CrossRef] [PubMed].
-
Foulquié Moreno M. R. , Sarantinopoulos P. , Tsakalidou E. , De Vuyst L. . ( 2006;). The role and application of enterococci in food and health. Int J Food Microbiol 106: 1––24 [CrossRef] [PubMed].
-
Franz C.M.A.P. , Huch M. , Abriouel H. , Holzapfel W. , Gálvez A. . ( 2011;). Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151: 125––140 [CrossRef] [PubMed].
-
Gaggia F. , Mattarelli P. , Biavati B. . ( 2010;). Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141: S15––S28.[CrossRef]
-
Gagnon M. , Savard P. , Rivière A. , LaPointe G. , Roy D. . ( 2015;). Bioaccessible antioxidants in milk fermented by Bifidobacterium longum subsp. longum strains. BioMed Res Int 2015: [CrossRef] [PubMed].
-
Gangaraju D. , Murty V. R. , Prapulla S. G. . ( 2014;). Probiotic-mediated biotransformation of monosodium glutamate to γ-aminobutyric acid: differential production in complex and minimal media and kinetic modelling. Ann Microbiol 64: 229––237 [CrossRef].
-
Gardner H. W. . ( 1975;). Decomposition of linoleic acid hydroperoxides. Enzymic reactions compared with nonenzymic. J Agric Food Chem 23: 129––136 [CrossRef] [PubMed].
-
Giraffa G. . ( 2003;). Functionality of enterococci in dairy products. Int J Food Microbiol 88: 215––222 [CrossRef] [PubMed].
-
Gokul K. , Muralidhara . ( 2014;). Oral supplements of aqueous extract of tomato seeds alleviate motor abnormality, oxidative impairments and neurotoxicity induced by rotenone in mice: relevance to Parkinson's disease. Neurochem Res 39: 1382––1394 [CrossRef] [PubMed].
-
Hosamani R. , Krishna G. , Muralidhara . , ( 2014;).[PubMed] Standardized Bacopa monnieri extract ameliorates acute paraquat-induced oxidative stress, and neurotoxicity in prepubertal mice brain. Nutr Neurosci [CrossRef] [Epub ahead of print].
-
Huang D. , Ou B. , Hampsch-Woodill M. , Flanagan J. A. , Prior R. L. . ( 2002;). High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50: 4437––4444 [CrossRef] [PubMed].
-
Ishibashi N. , Yamazaki S. . ( 2001;). Probiotics and safety. Am J Clin Nutr 73: (Suppl.), 465S––470S [PubMed].
-
Kiffin R. , Bandyopadhyay U. , Cuervo A. M. . ( 2006;). Oxidative stress and autophagy. Antioxid Redox Signal 8: 152––162 [CrossRef] [PubMed].
-
Lei M. , Dai X. , Liu M. . ( 2014;). Biological characteristics and safety examination of five enterococcal strains from probiotic products. J Food Saf 35: 324––335 [CrossRef].
-
Levine R. L. , Garland D. , Oliver C. N. , Amici A. , Climent I. , Lenz A. G. , Ahn B. W. , Shaltiel S. , Stadtman E. R. . ( 1990;). Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186: 464––478 [CrossRef] [PubMed].
-
Lewenstein A. , Frigerio G. , Moroni M. . ( 1979;). Biological properties of SF68, a new approach for the treatment of diarrhoeal diseases. Curr Ther Res 26: 967––981.
-
Lin M. Y. , Yen C. L. . ( 1999;). Antioxidative ability of lactic acid bacteria. J Agric Food Chem 47: 1460––1466 [CrossRef] [PubMed].
-
Litteljohn D. , Mangano E. N. , Hayley S. . ( 2008;). Cyclooxygenase-2 deficiency modifies the neurochemical effects, motor impairment and co-morbid anxiety provoked by paraquat administration in mice. Eur J Neurosci 28: 707––716 [CrossRef] [PubMed].
-
Lorea Baroja M. , Kirjavainen P. V. , Hekmat S. , Reid G. . ( 2007;). Anti-inflammatory effects of probiotic yogurt in inflammatory bowel disease patients. Clin Exp Immunol 149: 470––479 [CrossRef] [PubMed].
-
Lowry O. H. , Rosebrough N. J. , Farr A. L. , Randall R. J. . ( 1951;). Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265––275 [PubMed].
-
Lyte M. . ( 2011;). Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays 33: 574––581 [CrossRef] [PubMed].
-
Messaoudi M. , Lalonde R. , Violle N. , Javelot H. , Desor D. , Nejdi A. , Bisson J.-F. , Rougeot C. , Pichelin M. , other authors . ( 2011;). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105: 755––764 [CrossRef] [PubMed].
-
Mokrasch L. C. , Teschke E. J. . ( 1984;). Glutathione content of cultured cells and rodent brain regions: a specific fluorometric assay. Anal Biochem 140: 506––509 [CrossRef] [PubMed].
-
Moreadith R. W. , Fiskum G. . ( 1984;). Isolation of mitochondria from ascites tumor cells permeabilized with digitonin. Anal Biochem 137: 360––367 [CrossRef] [PubMed].
-
O'Mahony L. , McCarthy J. , Kelly P. , Hurley G. , Luo F. , Chen K. , O'Sullivan G. C. , Kiely B. , Collins J. K. , other authors . ( 2005;). Lactobacillus and Bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128: 541––551 [CrossRef] [PubMed].
-
Okada Y. , Tsuzuki Y. , Hokari R. , Komoto S. , Kurihara C. , Kawaguchi A. , Nagao S. , Miura S. . ( 2009;). Anti-inflammatory effects of the genus Bifidobacterium on macrophages by modification of phospho-IκB and SOCS gene expression. Int J Exp Pathol 90: 131––140 [CrossRef] [PubMed].
-
Petrof E. O. . ( 2009;). Probiotics and gastrointestinal disease: clinical evidence and basic science. Antiinflamm Antiallergy Agents Med Chem 8: 260––269 [CrossRef] [PubMed].
-
Pieniz S. , Andreazza R. , Anghinoni T. , Camargo F. , Brandelli A. . ( 2014;). Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Contr 37: 251––256 [CrossRef].
-
Playne M. . ( 1994;). Probiotic foods. J Food Aust 46: 362.
-
Ramalakshmi K. , Rao L. J. M. , Takano-Ishikawa Y. , Goto M. . ( 2009;). Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chem 115: 79––85 [CrossRef].
-
Savignac H. M. , Kiely B. , Dinan T. G. , Cryan J. F. . ( 2014;). Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil 26: 1615––1627 [CrossRef] [PubMed].
-
Stecher B. , Hardt W. D. . ( 2008;). The role of microbiota in infectious disease. Trends Microbiol 16: 107––114 [CrossRef] [PubMed].
-
Sun P. , Wang J. , Jiang Y. . ( 2010;). Effect of Enterococcus faecium (SF68) on immune function in mice. Food Chem 123: 63––68 [CrossRef].
-
Szabó I. , Wieler L. H. , Tedin K. , Scharek-Tedin L. , Taras D. , Hensel A. , Appel B. , Nöckler K. . ( 2009;). Influence of a probiotic strain of Enterococcus faecium on Salmonella enterica serovar Typhimurium DT104 infection in a porcine animal infection model. Appl Environ Microbiol 75: 2621––2628 [CrossRef] [PubMed].
-
Tan Q. , Xu H. , Aguilar Z. P. , Peng S. , Dong S. , Wang B. , Li P. , Chen T. , Xu F. , Wei H. . ( 2013;). Safety assessment and probiotic evaluation of Enterococcus faecium YF5 isolated from sourdough. J Food Sci 78: M587––M593 [CrossRef] [PubMed].
-
Tsai S. Y. , Huang S. J. , Mau J. L. . ( 2006;). Antioxidant properties of hot water extracts from Agrocybe cylindracea. Food Chem 98: 670––677 [CrossRef].
-
Woo J. Y. , Gu W. , Kim K. A. , Jang S. E. , Han M. J. , Kim D. H. . ( 2014;). Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a d-galactose-induced accelerated aging mouse model. Anaerobe 27: 22––26 [CrossRef] [PubMed].
-
Wu M.-H. , Pan T.-M. , Wu Y.-J. , Chang S.-J. , Chang M.-S. , Hu C.-Y. . ( 2010;). Exopolysaccharide activities from probiotic bifidobacterium: immunomodulatory effects (on J774A.1 macrophages) and antimicrobial properties. Int J Food Microbiol 144: 104––110 [CrossRef] [PubMed].
-
Wunderlich P. F. , Braun L. , Fumagalli I. , D'Apuzzo V. , Heim F. , Karly M. , Lodi R. , Politta G. , Vonbank F. , Zeltner L. . ( 1989;). Double-blind report on the efficacy of lactic acid-producing Enterococcus SF68 in the prevention of antibiotic-associated diarrhoea and in the treatment of acute diarrhoea. J Int Med Res 17: 333––338 [PubMed].

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/jmm/10.1099/jmm.0.000184dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/jmm AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/jmm/10.1099/jmm.0.000184dcterms_title,dcterms_subject-pub_serialIdent:journal/jmm AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....